
 

 UNIABUJA Journal of Engineering and Technology 
 

https://ujet.uniabuja.edu.ng/  
 

ISSN: 2714-3236 (Online); 2714-3228 (Print) 
 

Volume 2, Issue 2, 2025; 224-232 

 

 

Received: 05-06-2025 / Accepted: 22-06-2025 / Published: 18-07-2025 224 
https://doi.org/10.70118/ujet.2025.0202.21 

Fault Diagnosis System Using CNN-LSTM Networks 
 

Chinelo J.O. KINGSLEY1*, Muhammad UTHMAN2, Ibrahim A. BEBEJI3, Prince C. UDEH4 
 

1,2,3Department of Electrical/Electronic Engineering, University of Abuja, Abuja, Nigeria 
4Department of Electrical/Electronic Engineering, Veritas University Abuja, Abuja, Nigeria 

 
1*lovelyanyanwuchi@yahoo.com, 2m.uthman@yahoo.com, 3bebeji.abdulkareem@nasrda.com, 4udehp@veritas.edu.ng 

 
Abstract 
Prompt classification and detection of faults along transmission lines is critical to the smooth operation of energy companies, 
the maintenance of their power systems, and efficient transmission. Traditional methods are characteristically limited in their 
ability to handle large volumes of data thus, the need for intelligent networks such as neural networks. This research proposes 
the use of a hybrid of two of such networks - the Convolutional Neural Network (CNN), and the Long Short-Term Memory 
(LSTM), to improve the fault diagnostics capabilities for a three-phase transmission line. Fault data for twelve possible 
scenarios are obtained from a SIMULINK model. The CNN-LSTM model is trained and tested using this dataset in 80-20 
training-testing split. The features are four current values - three phases’ currents and ground current with targets labeled as 
0 (no fault) and 1 (faulty). The targets enable the model to classify faults into the twelve already defined labels. The CNN-
LSTM model was trained using normalized values to prevent overfitting. The CNN-LSTM model which is robust and good 
for time-series prediction and adapting to changing load patterns.  The model's performance was evaluated using confusion 
matrix, accuracy, precision, recall, and F1-score. The test accuracy was 94.56%, precision 95.89%, recall 95.40%, F1 score 
94.88%, and the confusion matrix showing 13 faults were misclassified out of 239, representing approximately 5%.  The CNN-
LSTM model is saved for real-time fault diagnosis.  

Keywords: Convolutional neural networks, long short-term memory, neural networks, transmission lines. 

1.0 Introduction  
The role of transmission lines in the functioning of power systems is critical considering that they are 

responsible for conveying electrical energy from the generating stations to the distribution stations. The 
efficiency and reliability of power systems structure rely heavily on the seamless operation of transmission 
lines. That said, these critical components are vulnerable to faults which might lead to even catastrophic 
system failures. These faults could be due to environmental factors, equipment malfunctions, external 
interference and disturbances (Khoshbouy et al., 2022; Tong and Wen, 2020). These types of faults are shown 
in figure 1. 

Figure 1: Transmission line fault classification (Al-Mtawa et al., 2022) 
 

Short circuits are the most common of faults in power-lines. It simply involves any of the conductors 
(ground inclusive) coming into contact with other conductors. This scenario creates an unintended current 
path which may disrupt operations and damage system components. Line outages refer to complete 
disruptions in the transmission line, resulting in the cessation of power flow and substantial disruptions in 
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electricity supply. Additionally, insulation degradation can gradually occur over time, leading to reduced 
transmission efficiency and increased risk of more severe fault (Das et al., 2022; Al-Mohammed et al., 2022).  

When it comes to fault clearing, time and accuracy are essential. Thus, timely diagnosis of the fault 
and implementation of accurate counter-measures is imperative to ensure the overall reliability and stability 
of power systems. Swift identification of faults is essential for implementing appropriate countermeasures 
promptly, minimizing downtime, and prevention of cascading failures. Traditional fault diagnosis methods 
often rely on rule-based approaches, to detect and classify faults. While these methods have been effective to 
some extent, they are quite limited when dealing with the complexities and intricacies of transmission line 
data (Tong and Wen, 2020; Das et al., 2022; Al-Mohammed et al., 2022). Modern power systems generate large 
volumes of data. Transmission lines generate substantial amounts of data from various sensors, monitoring 
devices, and supervisory control systems. Processing this data poses a significant challenge for traditional 
methods.  Manually analyzing this vast data is laborious and time-consuming, making it difficult to achieve 
real-time fault detection (Park et al., 2019; van Houdt et al., 2020; Shafiullah et al., 2022). Moreover, 
handcrafted features may not fully capture the intricate patterns and relationships present in transmission 
line data. The fault signatures can be subtle and may evolve over time, making it challenging for rule-based 
methods to adapt and provide accurate diagnoses consistently. 

Modern fault diagnosis techniques such as machine learning and deep learning, offer a promising 
solution to these challenges. One of these approaches, Long Short-Term Memory (LSTM) network, which is 
a type of Recurrent Neural Network (RNN), is capable of learning automatically, and extract relevant 
features from large volumes of data. They are specifically designed to handle sequential data, making them 
suitable for time-series data like that generated by transmission lines. Another neural network is the 
convolutional neural network (CNN) which is a type of deep learning technique used to process images and 
time-series data. They are quite capable of extracting spatial and temporal information automatically from a 
given data-set. CNNs are effective in classification and detection tasks, such as in fault classification for 
transmission lines such as in this study. CNN can be combined with LSTM for improved learning for 
sequential data and also to improve time-dependent pattern recognition. Features extracted using the CNN 
are fed into the LSTM layers, for sequential processing.  

By leveraging these networks, researchers and engineers can develop fault diagnosis models that 
learn from historical data and recognize subtle patterns indicative of potential faults. The models can adapt 
and improve their accuracy over time as they receive more data, enabling better fault detection and 
classification (Yan and Ma, 2021). The utilization of CNN-LSTM networks, with their ability to process 
sequential data and capture long-term dependencies, holds great promise for revolutionizing fault diagnosis 
in transmission lines, ensuring grid reliability, and addressing safety concerns in power systems (Yan et al., 
2023).  

This study combines CNN's strength in pattern identification and feature engineering with LSTM's 
capability to handle sequential or time-series data thus creating a robust model with improved accuracy. 
Figure 2 shows the structure an intelligent fault diagnostic system. 

 
Figure 2:  Power line fault diagnostic system (Ogar et al., 2022) 

 
Several studies have demonstrated the effectiveness of LSTM-based models, in fault diagnosis across 

different domains. For instance, Park et al. (2019) proposed a hybrid auto-encoder-LSTM model for rare events 
detection in time-series data, while Yan et al. (2023) applied a CNN-LSTM approach to aircraft hydraulic 
systems. Similar LSTM-based techniques were employed by Qin et al. (2018) for autonomous underwater 
vehicles and Yang et al. (2020) for bearing vibration signal fault analysis using a CatBoost classifier.  Liu et al. 
(2019) developed a low-delay lightweight recurrent neural network (LLRNN) based on LSTM for rotating 
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machinery fault diagnosis. Liu et al. (2022) developed an LSTM neural network for a nuclear power plant fault 
diagnosis. The test findings indicate over 99% accuracy by the model. An LSTM-based fusion module was 
implemented by Li et al. (2025), to aggregate continuous signals from multiple dimensions, and found 
effective with faults in distribution systems. In Kaplan et al. (2021), LSTM is proposed as an approach in 
detection of faults within the electro-chemical conversion chain for conventional electric vehicles (EV). Zheng 
et al. (2022) proposed a fault diagnosis and data recovery algorithm based on PCA and LSTM to mitigate 
failure during dry-type transformer temperature monitoring sensor working. Su et al. (2023) proposed two 
fusion models – CNN with attention module (AM) and multi-head LSTM to overcome limitations of 
traditional artificial intelligence based fault location methods. 

Wang et al. (2021) proposed a deep hybrid CNN-LSTM network model for single-terminal fault 
location on an HVDC system containing mixed cables and overhead line segments while Alsumaidee (2023) 
explored the effectiveness of deep learning techniques, specifically 1D-CNN model, LSTM model, and 1D-
CNN-LSTM model, in detecting arcing problems in switch-gear. A CNN-LSTM-based approach was used by 
Qi et al. (2024) for wind motor fault detection, achieving up to 97% accuracy. Lim et al. (2024) proposed a 
bidirectional LSTM approach for fault diagnosis in medium-voltage direct current (MVDC) systems, while 
Wang et al. (2021) applied LSTM neural network in the classification of raw sensor data for a simulated MMC-
HVDC (Modular Multilevel Converter in High Voltage Direct Current Systems) transmission system. Wang 
et al. (2020) proposed a fault diagnosis method based on wavelet packet to improve the LSTM network in 
solving the issue of accuracy in vibration motor fault. Feng et al. (2023) addressed class imbalance using a 
stacked de-noising autoencoder-generative adversarial network-long short-term memory (SDAE-GAN-
LSTM) for a three-phase permanent-magnet synchronous motor (PMSM) drive system. Elhalwagy and 
Kalganova (2022), presented a novel neural network (NN) utilizing a LSTM encoder and capsule decoder in 
a multi-channel input autoencoder architecture for use on multivariate time series data. BiLSTM and residual 
network (ResNet) were implemented by Xie et al. (2022) in fault classification for electric drives used in a 
marine electric propulsion system. This approach when compared to conventional deep learning algorithms, 
according to results, is faster and the accuracy can reach over 95% under 25 – 19 dB. Bai et al. (2025) also 
employed BiLSTM with improved temporal convolution network (TCN), to predict temporal fault patterns 
in industrial equipment.  To overcome the inefficiency of traditional transmission line fault diagnosis in 
handling faults, Lu et al. (2023) proposed an extraction based convolutional LSTM (ECLSTM) approach which 
tackles dynamic coupling of process variables. In de Abreu et al. (2023) spiking neural networks (SNN) was 
shown to be better than LSTM in anticipating faults in syntactical time. In Attouri et al. (2023), a novel fault 
detection and diagnosis (FDD) method, trained using a BiLSTM model for a wind energy converter (WEC) 
was presented. Hasan et al. (2024) proposed a sensor fault detection method using LSTM autoencoder (LSTM-
AE) using a multistep-based approach while Alhamd et al. (2024) in order to train an LSTM model, introduced 
a method of feature extraction through advanced wavelet transform analysis of differential current for 
detection of faults within power transformers. Zhou et al. (2023) applied CNN, back propagation (BP) and 
LSTM to battery fault diagnosis. Lee et al. (2020) implemented a CNN-LSTM algorithm and Fast Fourier 
Transform (FFT) in deriving the threshold setting of the abnormal pattern in data collected from 
manufacturing sites. Cha et al. (2023) proposed a CNN-LSTM model that was trained on the signal sequences 
of Hall sensors and can effectively distinguish between normal and faulty signals, achieving an accuracy of 
the fault-diagnosis system of around 99.3% for identifying the type of fault. 

The versatility of LSTM-integrated models is further explored in Khan et al. (2024) who evaluated the 
performance of FedLSTM (Federated LSTM) against the centralized approach based on performance statistics 
like F1 score, precision, accuracy, and sensitivity. Also, Sabireen and Venkataraman (2023) used a Recurrent 
Neural Network (RNN)-based method, based on LSTM-CRP (Computation Memory and Power) to predict 
proactive faults in the event of insufficient resources in fog devices. In Al-Hardanee and Demiral (2024), 
artificial neural network algorithms (RNN and LSTM) are used to predict the condition of the hydropower 
station, identify the fault before it occurs, and avoid it. Jafari and Lopes (2023) integrated the kernel principal 
component analysis (KPCA) and LSTM to detect fault, and compared the performance to support vector 
machine (SVM), K-nearest neighbors (KNN) algorithm, and decision trees, in determining the type of fault. 
In Sanchez et al. (2022), LSTM, BiLSTM, multilayer perceptron and CNN networks are used for fault-isolation 
and detection in induction motors. Ahsan and Salah (2023) proposed a highly accurate Deep Convolution 
Neural Network (DCNN)–Long Short-Term Memory (LSTM) model with a SoftMax classifier. Zhang et al. 
(2023) proposed a 1D-CNN (one-dimension CNN) and interpretable BiLSTM for intelligent fault diagnosis in 
LREs (liquid rocket engines) while Agarwal et al. (2022), presented a Deep LSTM supervised autoencoder 
neural network (Deep LSTM-SAE NN) for the detection and classification and detection of faults in industrial 
plants.  

Using Long Short-Term Memory (LSTM) Networks in combination with other algorithms or neural 
networks holds great promise for enhancing fault diagnosis accuracy and reliability in power transmission 
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systems. By leveraging the capabilities of CNN and LSTM networks, the research aims to address the 
limitations of traditional fault diagnosis methods in handling time-series data and capturing complex fault 
patterns. The systematic approach outlined seeks to develop a robust CNN-LSTM-based fault diagnosis 
model and validate its effectiveness with real-world transmission line data.  These studies highlight the 
potential of LSTM-based networks in fault diagnosis and provide valuable insights for the proposed study. 

 
2.0 Materials and Methods 

MATLAB is used to train the CNN-LSTM model. The fault data used to train the CNN-LSTM model 
was obtained using the SIMULINK model in Figure 3.  

 
Figure 3: Transmission line model in Simulink 

 
 The fault block was used to simulate several types of fault. The fault scenario simulated are tabulated 
in table 1 below. A, B and C represent the three phases, while G represents ground. For model training, 100 
samples for each fault type was used, totaling 1200 samples. The training-validation data split used was 80-
20%. A clean dataset was used, meaning no irrelevant data was included to the pattern to be learnt was used 
in the training and testing. 
 

Table 1: Fault categorization 
S/N Fault Label General Category 
1 No Fault  
2 A - B  Line-to-line fault (LL) 
3 A – C 
4 B – C 
5 A – G Single-Line-to-Ground Fault (SLG) 
6 B – G 
7 C – G 
8 AB – G Double-Line-to-Ground Fault (LLG) 
9 AC – G 
10 BC – G 
11 ABC Three-Phase Fault (LLL and LLLG) 
12 ABC – G 

 
2.1 Network flowchart 

The flowchart for the CNN-LSTM model development and training is shown in figure 4. Table 2 
shows the network simulation parameters. 
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Figure 4: Flowchart for the model 

 
 The flowchart in figure 4 captures the process of creating, training and eventual implementation of 
the model for fault diagnosis. 
 

Table 2: Model training and testing parameters 
Parameter Value 
LSTM Layers 100 
Epoch 200 
Iterations per Epoch 120 
Maximum Iterations  24000 
Learning Rate 0.001 
Dropout Rate 0.2 
Mini-batch Size 8 
Optimizer Adam 

 
2.2 Network architecture 

The CNN-LSTM model combines the spatial features extraction capabilities of the CNN with the temporal 
sequence learning ability of the LSTM networks. This makes it possible for adapting the network to time-
series sensor data used in this study. In this study, the CNN layers learn local spatial features from time-series 
data, while the LSTM layer captures the temporal properties for accurate fault classification. The architecture 
of the CNN-LSTM includes the following: 

1. Input 
2. CNN layers: Here, convolutional filters are added to extract spatial features 
3. Flatten or Reshape: This converts the CNN output to a shape the LSTM can handle: (samples, time 

steps, features) 
4. LSTM Layers: These layers capture sequential dependencies in the features extracted by CNN. 
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5. Dense layer and output: Final dense layers for prediction. 
The model was trained using a fixed dataset split. The limitation was that k-fold cross-validation was not 

implemented. Model performance was observed using the batch-level training loss and accuracy.  
 

3.0 Results and Discussion 
Due to the available computational resources (Lenovo ThinkPad T460s with a 2.4 GHz processing 

speed, 8 GB RAM, intel core i5), and the need for high values of training and testing accuracy, the training 
process lasted for 23 minutes. Figure 5 presents the model's training accuracy and loss over time. 

 

 
Figure 5: Model training accuracy and training loss 

 
 For each epoch, recorded mini-batch accuracies and losses were aggregated to obtain epoch-level 
metrics. This was done to ensure consistent tracking of the model's performance over time. The chart shows 
that as the number of epochs increased, the loss decreased with progression in epoch. 

The performance metrics as obtained from the training of the CNN-LSTM model are in Table 3. 
  

Table 3: Performance metrics 
Performance Metric Value (%) 
Test Accuracy 94.5607 
Precision 95.8889 
Recall  95.4049 
F1 Score 94.88 

 
The performance metrics in Table 3 confirm the model's reliability for fault detection in energy 

carrying lines. The computed metrics each serves a purpose. The accuracy provides an overall measure of the 
process, recall is critical to ensuring that no fault goes undetected while precision reduces the possibility of 
false alarms. The F1-score provides a balance between precision and recall scores. The F1-score provides a 
comprehensive measure that reflects both the ability to detect actual faults and the correctness of such 
predictions.  

   𝐹𝐹1 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

        (1) 
 The key metrics presented in Table 3 achieve approximately 95% which indicates that the model 
predicts events correctly and consistently across considered fault types. Table 4 compares the accuracy 
achieved from this study with some from the literature reviewed.  
 

Table 4: Performance comparison 
Reference Approach Accuracy (%) 
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Qi et al (2024) CNN-LSTM 97 
Cha et al (2023) CNN-LSTM 99.3 
Zhang et al (2023) CNN-BiLSTM 97.39 
Sabireen and Venkataram (2023) LSTM-CRP 98.69 

 
The confusion matrix provides insight into which fault types are frequently misclassified, and thus 

helps guide improvements in the model architecture and data preparation. The confusion matrix presented 
in figure 6 provides insight into the class-wise performance. Figure 6 shows the confusion matrix as obtained 
from the training. The accuracy of the trained CNN-LSTM model is approximately 95%. 

 
Figure 6: Confusion matrix for fault classification 

 
 The confusion matrix shows that out of 239 fault scenarios, 226 were properly classified (diagonal in 
blue). The remaining thirteen which represents approximately 5% of the data, was misclassified. Eleven (11) 
out of the misclassified data were A-B fault. The chart shows that most misclassifications occur between LLL 
and LL, six. 
 
4.0 Conclusion 

LSTM has been employed in several research for fault classification and identification due to its ability 
to handle time-series data. Integrating CNN with LSTM for a hybrid CNN-LSTM model suggests a robust 
model capable of extracting spatial and temporal features or patterns (due to the CNN) and the handling of 
sequential detail or features extracted from the CNN by using LSTM. The results show a test accuracy of 
95.5607%, precision of 95.8889%, recall of 95.4049%, F1 value of 94.88% and the confusion matrix. The CNN-
LSTM model has been adopted to improve fault diagnostics of a 132kV transmission line, and achieving an 
accuracy of 95.56%. This result suggests that the trained CNN-LSTM model is suitable for real-time 
identification and classification of faults in transmission systems. 
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