
 

 UNIABUJA Journal of Engineering and Technology 
 

https://ujet.uniabuja.edu.ng/  
 

ISSN: 2714-3236 (Online); 2714-3228 (Print) 
 

Volume 2, Issue 2, 2025; 216-223 

 

 

Received: 25-06-2025 / Accepted: 26-06-2025 / Published: 11-07-2025 216 
https://doi.org/10.70118/ujet.2025.0202.20 

Predictive Modelling of Graphene-Based Supercapacitors for Enhanced Energy Storage 
Applications: A Machine Learning Approach 

 
Luqman E. OLOORE1, Uthman O. UTHMAN2, Abiodun E. ADEOYE3, Caleb A. ABORISADE4* 

 

1,2,3,4Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, Ibadan, Oyo State, Nigeria 
 

1luqman.oloore@tech-u.edu.ng, 2olayodeuthman@gmail.com, 3adeoye.abiodun@gmail.com, 4aborisadecaleb@gmai.com 
 
Abstract 
Despite the growing interest in graphene-based materials for supercapacitors, owing to their high electrical 
conductivity and huge specific surface area, there are currently no systematic methods for accurately predicting their 
electrochemical performance. Current research in this area is often hindered by empirical trial–and–error techniques 
and fragmented datasets, impeding the logical design and optimization of high-performing devices. To address these 
gaps, the present study leverages ML to forecast the performance of graphene-based supercapacitors, focusing on 
specific capacitance, power density and energy density. A comprehensive dataset was compiled from existing literature, 
encompassing physicochemical properties and electrochemical test features. Three ML models, Gradient Boosting 
Regression (GBR), Random Forest Regression (RFR), and Multiple Linear Regression (MLR) were employed to 
predict supercapacitor performance. The GBR model achieved the best overall performance with R² values of 0.9, 0.7, 
and 0.8, and MSE values of 1.03 F2/g2, 5.05 (Wh/kg)2, and 2.30 (W/kg)2 for specific capacitance, energy density, and 
power density respectively. The results indicate that GBR outperformed other models, achieving the highest 
determination coefficient (R²) values and the lowest mean squared error (MSE) for energy density, power density, and 
specific capacitance. RFR showed comparable robustness with slightly higher MSE values, while MLR had the lowest 
accuracy among the three. Correlation analysis revealed that annealing temperature and current density significantly 
influence specific capacitance and power density, respectively. This study underscores the potential of ML in 
optimizing graphene-based supercapacitors, providing valuable insights for the advancement of next-generation 
energy storage technologies. 
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1.0 Introduction 

The growing global demand for effective energy storage solutions has accelerated research into advanced 
materials for supercapacitors, which are known for their substantial power density and quick charge-
discharge ability. Among these materials, graphene which is a single layer of carbon atoms arranged in a 2D 
honeycomb lattice, has become an attractive candidate due to its exceptional electrical conductivity, large 
specific surface area, and superior mechanical properties (Akhtar & Akhtar, 2021; Du et al., 2023; Huang et 
al., 2012; Lemine et al., 2018; Liu et al., 2013; Salunkhe et al., 2014; Wang et al., 2021; Worsley et al., 2022). The 
unique structure of graphene facilitates efficient electron transport and provides an extensive surface area for 
charge accumulation, making it ideal for improving the supercapacitor performance. Recent advancements 
have focused on developing graphene-based composites – such as those combined with metal oxides or 
conducting polymers – to further improve energy storage capabilities (Salunkhe et al., 2014; Wang et al., 2021). 
For instance, nitrogen-doped graphene combined with metal oxides, including manganese, nickel, and cobalt 
oxides, has shown promise for supercapacitor applications due to enhanced pseudocapacitive properties 
(Deshsorn et al., 2023; Yadav & Devi, 2020). Conducting polymers, such as polyaniline, offer environmental 
stability, low cost, and high pseudocapacitance when combined with graphene (Kumar & Baek, 2014). Despite 
these advancements, challenges persist in optimizing the synthesis processes to maintain the intrinsic 
properties of graphene and in achieving scalable production methods. Addressing these issues is essential for 
the practical application of graphene-based supercapacitors in next-generation energy storage systems 
(Akhtar & Akhtar, 2021; Du et al., 2023; Worsley et al., 2022). Recently, ML has become a potent tool in 
materials science, offering predictive insights that can significantly expedite the development of advanced 
materials. By analyzing vast datasets, ML algorithms can identify patterns and relationships among variables 
that traditional experimental approaches might overlook.  

In the context of graphene-based supercapacitors, techniques involving ML have been used to predict 
specific capacitance and life expectancy, thereby guiding the design and optimization of electrode materials 
(Deshsorn et al., 2023; Jamaluddin et al., 2023; Mishra et al., 2023; Saad et al., 2022; Sawant et al., 2023; Yogesh 
et al., 2025; Zhu et al., 2018). For instance, research has shown that artificial neural networks and other ML 
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models are effective in predicting the graphene-based electrode’s electrochemical performance, considering 
factors like surface area, pore structure, and doping levels (Deshsorn et al., 2023; Saad et al., 2022). Shariq et 
al. (2024) utilized various ML models, including support vector regression, random forest, and multiple linear 
regression, to predict electrochemical properties such as electrical conductivity and sheet resistance (Saad et 
al., 2022). The integration of ML techniques into the study of graphene-based supercapacitors has opened new 
avenues for optimizing energy storage devices. For example, Saad et al., (2022) formulated various ML 
models, including artificial neural networks (ANN), Bayesian ridge regression (BRR), decision tree regression 
(DTR), and k-nearest neighbors ’regression (KNN) to predict the graphene-based electrode’s specific 
capacitance. By extracting experimental data from over 200 published studies, they included physicochemical 
features including the percentages of nitrogen, oxygen, and carbon atoms; electrode configuration; specific 
surface area (SSA); pore volume; pore size; and the ID/IG ratio. Additionally, electrochemical test properties 
from electrochemical impedance spectroscopy analyses and galvanostatic charge-discharge tests were 
included. With a coefficient of determination (R²) of 0.88 and a root mean square error (RMSE) of 60.42, the 
ANN model demonstrated exceptional accuracy. Further analysis revealed that doping levels of nitrogen and 
oxygen significantly influenced the model’s predictions. Similarly, Mishra et al. (2022) used ML algorithms to 
evaluate the impact of various carbon-based material’s physicochemical properties on the capacitive 
performance of electric double-layer capacitors. A total of 4,899 entries were extracted from 147 references 
and considered features like current density, pore volume, pore size, defect presence, potential window, SSA, 
and oxygen and nitrogen content. Categorical variables like testing methods, electrolytes, and carbon 
structures were also analyzed. SSA, nitrogen doping, and potential window were found to be important 
descriptors for particular capacitance by the extreme gradient boosting model, which had the best association 
among the five regression models. In addition, Jamaluddin et al. (2023b) investigated the key factors of 
graphene properties influencing supercapacitor performance using ML models. Four algorithms were 
evaluated: Random Forest (RF), Decision Table (DT), lazy IBK, and Linear Regression (LR). The RF model 
exhibited the highest correlation value of 0.745, indicating its effectiveness in predicting capacitance. The 
study also highlighted that graphene’s porous structure and large specific surface area lead to enhanced 
capacitance values. Recent studies have continued to advance this frontier. For example, Liao et al. (2024) 
employed ML to optimize N-doped biochar, while Tawfik et al. (2024) implemented a deep learning 
framework to predict specific capacitance from raw electrochemical parameters. Similarly, Bi et al. (2024) 
explored feature importance ranking in supercapacitor datasets, improving interpretability and material 
selection strategies. 

This study aims to use ML to predict graphene-based supercapacitors effectiveness, with emphasis on how 
various physicochemical properties influence specific capacitance. By integrating experimental data with ML 
models, we seek to uncover critical factors that enhance energy storage capabilities, thereby contributing to 
the development of more efficient and durable supercapacitors. 

 
2.0 Materials and Methods 

Figure 1. present the flowchart that outlines the methodologies employed in the development and 
evaluation of predictive models for the graphene-based supercapacitors. 
 
2.1 Data Collection 

Three ML algorithms were implemented to forecast graphene-based supercapacitors’ specific capacitance, 
energy, and power densities: A multiple independent variable’s linear relation with a dependent variable is 
modeled using multiple linear regression (MLR). To increase prediction accuracy and reduce overfitting, 
random forest regression (RFR) was used. RFR is an ensemble technique that constructs multiple decision 
trees. With Gradient Boosting Regression (GBR), complex datasets are handled effectively by building models 
one after the other, each of which corrects errors made by previous ones. Each model was trained using the 
collected dataset, with hyperparameters optimized through cross-validation techniques to ensure robust 
performance. 

A total of 510 data entries were compiled from peer-reviewed literature, covering both graphene-only and 
graphene-composite electrode materials. The dataset includes physicochemical properties (e.g., annealing 
temperature, surface area, pore volume) and electrochemical performance metrics (e.g., specific capacitance, 
energy density, and power density). All data processing and model development were carried out using 
Python 3.9, utilizing libraries such as Scikit-learn for machine learning, Pandas and NumPy for data 
manipulation, Excel and Matplotlib for visualization. 
To ensure data suitability for modelling, the pre-processing steps undertaken include data cleaning, where 
units were standardized, and missing values for parameters like annealing temperature, energy density, and 
power density were imputed using mean or median values, as appropriate. Secondly, categorical encoding 
was used, where hot encoding was used to transform categorical variables (electrolyte type and composite 
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material) into numerical representations. To aid in model validation, datasets were split into training (80%) 
and testing (20%) subsets during the train-test split. 

 
Figure 1: Flowchart summarizing the method 

2.2 Model Training and Validation 
Each of the three regression models MLR, RFR, GBR, was trained using the pre-processed dataset. MLR 

assumes a linear relationship between input features and target output. RFR constructs an ensemble of 
decision trees using bootstrap aggregation and outputs the mean of individual predictions. The model was 
configured with 100 trees and a maximum depth of 10, determined via grid search cross-validation. GBR 
builds an ensemble in a stage-wise fashion, where each successive tree corrects errors made by the previous 
one. Learning rate and number of estimators were optimized using a 5-fold cross-validation. 

The dataset was randomly split into 80% for training and 20% for testing. A 5-fold cross-validation 
strategy was used for model selection and hyperparameter optimization to avoid overfitting. For further 
validation, model predictions were compared against experimental values from the literature not included in 
the training set. To validate the generalizability of the developed models, they were evaluated on a different 
validation dataset that was not utilized during training. The performance of the models on this dataset was 
compared to their training performance to detect any signs of overfitting. Furthermore, the model’s 
predictions were bench marked against experimental results from recent studies to evaluate their practical 
applicability. 

 
2.3 Performance Evaluation 

The models’ predictive accuracy was evaluated using the coefficient of determination (R2), which 
indicates the proportion of variance in the target variable that can be predicted from the input features, and 
the root mean square error (RMSE), which measures the average size of the prediction errors. The R² score is 
defined as: 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 

Where 𝑦𝑦𝑖𝑖 is the actual value, 𝑦𝑦𝚤𝚤�   is the predicted value, and 𝑦𝑦�𝑖𝑖 is the mean of actual values. 
The RMSE is computed as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

These metrics were computed for each target variable, specific capacitance, energy density, and power 
density on both training and test datasets to evaluate prediction accuracy and generalizability. 
 
3.0 Results and Discussion 

The results include dataset distribution analysis, model performance evaluation, correlation between 
input and output parameters, and a comparative analysis of predicted and actual values.The dataset was 
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categorized into two groups: graphene-only supercapacitors and graphene-composite supercapacitors. The 
annealing temperature for graphene-only supercapacitors varied between 80°C and 637°C. Current density 
ranged from 0.05 A/g to 1.84 A/g, while the specific capacitance values spanned 67.9 F/g to 226.28 F/g. The 
highest recorded energy and power densities were 53.06 Wh/kg and 4078.14 W/kg, respectively. For 
graphene-composite supercapacitors, the annealing temperature ranged from 60°C to 200°C. Current density 
had a broader range, from 0.10 A/g to 1.98 A/g, while the specific capacitance values varied from 36.25 F/g 
to 649.73 F/g. The energy density peaked at 55.00 Wh/kg, whereas the maximum power density reached 
3245.27 W/kg. These variations highlight the influence of composite materials in enhancing supercapacitor 
performance. 

 
Table 1. Summary of the performance evaluation for graphene-only and graphene composite samples, for 

each model. 
Models R2 MSE 
 Specific 

Capacitance 
Energy 
Density 

Power 
Density 

Specific 
Capacitance 

Energy 
Density 

Power Density 

Graphene-Only 

MLR 0.7 0.90 0.5 5.10 1.29 2.36 
RFR 0.6 0.40 0.6 1.53 4.09 2.19 
GBR 0.9 0.7 0.8 1.03 5.05 2.30 

Graphene Composite 

MLR 0.6  0.7  0.5 73.9 21.1 33.0 
RFR 0.8 0.6 0.6 59.1 25.2 28.2 
GBR 0.8 0.8 0.7 56.8 24.4 30.7 

 
The mean squared error (MSE) and coefficient of determination (R2) were utilized to evaluated the   

predictive capabilities of gradient boosting regression (GBR), multiple linear regression (MLR), and random 
forest regression (RFR). The results for both datasets are summarized in Table 1. Among the models tested, 
GBR exhibited the best predictive performance with the highest R² values (0.9, 0.7, and 0.8) and the lowest 

MSE (1.03, 5.05, and 2.30) for specific capacitance, energy density, and power density, respectively. MLR 
showed moderate performance, whereas RFR had lower accuracy in this dataset. In the composite dataset, 
GBR and RFR exhibited comparable performances, with R² values above 0.7 for most parameters. The MSE 
values of GBR (56.8, 24.4, and 30.7) were slightly lower than those of RFR (59.1, 25.2, and 28.2), confirming 
that GBR provided more stable predictions. The random forest regression model emerged as the most reliable 

Figure 2. The correlation between input and output parameters for Graphene 
Supercapacitor; (a)Temperature vs Specific-cap (b)Current density vs specific-cap (c) 
Temperature vs power density (d) current density vs power density (e) Temperature 

vs energy density (f) current density vs energy density 
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predictor across both datasets, demonstrating high R² values and the lowest MSE values. The results affirm 
the robustness of ensemble learning techniques for predicting complex electrochemical properties. 

A correlation analysis was performed to evaluate the connections between the output parameters, 
including energy density, power density, and specific capacitance, and the important input factors, such as 
annealing temperature and current density. The correlations are visualized in Figure 2 and Figure 3. A positive 
correlation was observed between annealing temperature and specific capacitance, particularly in the 
graphene-only dataset. This suggests that controlled thermal treatment enhances electrochemical 
performance. Conversely, no clear trend was observed between annealing temperature and power density, 
indicating that power density may be more influenced by other factors such as electrolyte composition. An 
inverse correlation was found between current density and specific capacitance, meaning higher current 
densities tend to reduce specific capacitance. Power density, however, showed a positive correlation with 
current density, confirming that higher charge/discharge rates lead to enhanced power delivery. 

While the GBR model achieved the highest accuracy in terms of R2 and MSE during training and testing, 
the RFR model showed greater robustness in generalization, especially when predicting experimental values 
not included in the training set. This difference can be attributed to the learning strategies of the two models: 
GBR builds sequential learners where each model attempts to correct the residuals of the previous one, 
making it highly optimized for the training set, but potentially sensitive to noise or overfitting when faced 
with unseen data. In contrast, RFR, as a parallel ensemble method, averages predictions across multiple 
uncorrelated trees, which leads to better generalization, especially when the dataset contains outliers or noisy 
features. 

The observed correlation trends are consistent with established electrochemical principles. For instance, 
the positive correlation between annealing temperature and specific capacitance aligns with the fact that 
higher thermal treatment can improve material crystallinity, reduce structural defects, and enhance electron 
transport, all of which improve double-layer formation and pseudocapacitive behavior. Likewise, the inverse 
relationship between current density and specific capacitance is well-documented in supercapacitor literature: 
at high current densities, there is insufficient time for ion diffusion into micropores, leading to reduced charge 
storage efficiency. On the other hand, the positive correlation between current density and power density 

Figure 3. The correlation between input and output parameters for Graphene with Composite 
Supercapacitor; (a)Temperature vs Specific-cap (b)Current density vs specific-cap (c) 

Temperature vs energy density (d) current density vs energy density (e) Temperature vs 
power density (f) current density vs power density 



Oloore et al. (2025)               Volume 2, Issue 2: 216-223 

Received: 25-06-2025 / Accepted: 26-06-2025 / Published: 11-07-2025 221 
https://doi.org/10.70118/ujet.2025.0202.20 

reflects the definition of power density, which favors faster charge-discharge kinetics. These trends confirm 
that the ML models not only learn patterns from data but also reflect physically meaningful relationships 
inherent in the electrochemical behavior of graphene-based systems. This concordance enhances the 
interpretability and credibility of the ML predictions. 

To determine the effectiveness of the ML models, predicted output values were compared to the actual 
experimental results for both graphene-only and graphene-composite supercapacitors. The Random Forest 
Regression (RFR) model, which has been found to be the most accurate predictor, was used for comparison. 
Figures 4 present bar charts illustrating the discrepancies between the actual and predicted values for energy 
density, power density, and specific capacitance. The predicted specific capacitance closely follows the real 
values, though minor deviations occur, particularly for Sample 3 and Sample 5. The energy density 
predictions show slight underestimations in the lower range but align well at higher values. Power density 
predictions remain consistent, with minimal deviations across the dataset, confirming the robustness of the 
RFR model. The specific capacitance predictions for composite supercapacitors exhibit a strong correlation 
with experimental values, particularly in the mid-range samples. Energy density predictions demonstrate a 
slight overestimation at lower values, likely due to non-linearity in material behavior. The power density 
predictions exhibit higher precision, reinforcing the effectiveness of the RFR model for composite materials. 
Overall, the results show that the model can generalize across a variety of material compositions while 
highlighting the need for further optimization for extreme values.

 
Figure 4. The comparison between predicted and real output parameters for Graphene Supercapacitor using 
Random Forest Regression; (a) Capacitance (b) energy density (c) Power density. The comparison between 
predicted and real output parameters for Graphene with composite Supercapacitor using Random Forest 

Regression; (a) Capacitance (b) energy density (c) Power density 
 

To further validate the reliability of the random forest regression model, a cross-validation analysis was 
conducted by comparing predicted values with published experimental data. The ability of the model to 
predict specific capacitance, power density, and energy density was examined across multiple test samples. 
A radar chart (Figure 5a) was used to compare predicted and experimental specific capacitance values for ten 
sample points at different current densities. The Random Forest model accurately captured the general trend 
across the dataset, with minor deviations at Sample 2 and Sample 8. Slight overestimation and 
underestimation at specific points indicate that feature refinement could further improve predictions. A bar 
chart (Figure 5b) comparing experimental and predicted power density values at different current densities 
confirms that predictions align closely with experimental data at moderate current densities. At higher current 
densities (10 A/g), the model slightly overestimates power density, suggesting a need for further training on 
extreme cases. A 3D bar chart (Figure 5c) comparing experimental and predicted energy density values across 
different current densities reveals a good degree of agreement between predicted and actual energy density 
values throughout the majority of the data points. Underestimations at lower current densities, but improved 
accuracy at higher current densities, which reinforces the model’s predictive strength. The cross-validation 
results confirm that the random forest regression model predicts supercapacitor performance quite well with 
minimal errors. However, some discrepancies at extreme values suggest a need for feature engineering 
improvements, larger datasets, and hybrid ML approaches. 
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4.0 Conclusion 

This study demonstrates the capability of ML techniques to predict the electrochemical performance of 
graphene-based supercapacitors using a dataset of experimentally derived physicochemical and test 
parameters. Among the models tested, Gradient Boosting Regression (GBR) achieved the highest predictive 
accuracy, while Random Forest Regression (RFR) showed robust generalizability across material types. 
Correlation analyses further identified annealing temperature and current density as critical parameters 
influencing performance metrics such as specific capacitance and power density. Beyond predictive accuracy, 
the practical implications of this work are significant. The ML models can serve as computational tools for 
pre-screening materials and synthesis conditions, reducing the need for resource-intensive trial-and-error 
experiments. This enables a more efficient design of graphene-based composites for real-world energy storage 
applications. However, the study is not without limitations. The dataset size, while sufficient for training basic 
ML models, may not capture the full diversity of material compositions and synthesis conditions. In addition, 
class imbalance between graphene-only and composite materials, and between low and high current densities, 
could affect model generalizability at extreme conditions. To strengthen the applicability of this work, future 
studies should integrate real-time experimental feedback into model refinement, validate predictions through 
targeted laboratory synthesis, and expand the dataset with automated data mining from the literature. 
Furthermore, coupling ML models with first-principles simulations (e.g., DFT) could offer a hybrid approach 
to uncover mechanistic insights while maintaining predictive power. Overall, this study highlights the 
transformative role of ML in accelerating the discovery and optimization of graphene-based supercapacitor 
materials and encourages deeper integration of data-driven methods into experimental workflows for next-
generation energy storage systems. 
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