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Abstract  
Accurate and early diagnosis of Parkinson's disease (PD) is still a challenge. In this work, stacked ensemble learning 
is explored for enhanced PD prediction from voice data. The "Parkinson’s" dataset consisting of 195 instances from 
22 recordings of voices (features) was downloaded from Kaggle. Preprocessing of the data included resampling through 
Synthetic Minority Oversampling Techniques to balance against possible class imbalance, as well as normalization 
through Min-Max scaling. Gain Ratio was used for feature ranking, and experiments were done using the top 5 and 
top 10 ranked features. Four machine learning algorithms – K-Nearest Neighbor, Logistic Regression, Random Forest, 
and a Stacked Ensemble (with SVM, KNN, and Random Forest as base learners and Logistic Regression as the meta 
learner) – were compared using a hold-out evaluation strategy with accuracy, precision, recall, and F1-score as 
measures of evaluation. It was found that Stacked Ensemble worked the best, particularly when the top 10 features 
were implemented to train (Accuracy: 95.7%, Precision: 95.0%, F1-Score: 95.0%, Recall: 95.0%) and outperformed 
all the individual models as well as what was discovered when the top 5 features only were used. By this study, it is 
concluded that stack ensemble learning coupled with effective feature selection is an effective approach to enhance 
Parkinson's disease prediction from voice data. 
 
Keywords: Parkinson disease, gain ratio, stacked ensemble, voice recording.   

 
1.0 Introduction 

Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder affecting over 10 million 
patients worldwide, leading to tremor, rigidity, and voice disturbance (Poewe et al., 2022). It necessitates early 
diagnosis, but clinical examination remains highly subjective and detects PD only after the disease reaches an 
advanced stage. Previous work has explored voice analysis as a low-cost, pain-free diagnostic tool because 
PD patients exhibit distinctive vocal behaviors such as reduced pitch variability, breathiness, and 
disorganized articulatory movements (Sakar et al., 2019). Machine learning (ML) has been promising to 
automatize PD diagnosis from voice features, but the application of singlemodel based approaches has 
resulted in inconsistent performance and weak generalizability (Ali et al., 2021).  

Past studies have predominantly employed isolated algorithms for PD voice classification. For instance, 
Support Vector Machines (SVM) achieved a success rate of 88% in discriminating PD patients from controls 
(Benba et al., 2020), whereas Random Forests (RFs) and k-Nearest Neighbors (KNN) achieved 85– 90% 
accuracy in such tasks (Rusz et al., 2021). However, they have three major limitations: Dominant feature 
preference, overlooking the subtle vocal cues; Sensitivity to dataset imbalance, as PD voice datasets typically 
have unbalanced class distributions; and Inability to extract complementary patterns that can improve 
diagnostic robustness (Tsanas et al., 2022).   

Moreover, Support Vector Machines (SVM) (Gozem et al., 2019), K-Nearest Neighbors (KNN) (Ozturk & 
Ozturk, 2020), and Random Forest (RF) (Pereira et al., 2018) are some of the algorithms that have shown high 
accuracy in classifying individuals with and without PD from their voice features. These researches have 
pointed towards the promise of ML to yield an objective and automated method of screening and diagnosis 
of PD. Relying solely on a single ML algorithm, however, can be restrictive. Every algorithm is susceptible to 
containing inherent bias and possesses specific strengths. Their effectiveness can be inconsistent depending 
on the exact character of the dataset in addition to the complexity of the underlying patterns. Individual 
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models may fail to adequately represent the entire variety of small voice modifications that exist with PD, and 
these can lead to suboptimal precision in prediction and generalization (Polikar, 2012).  

 As a response to these challenges, this study proposes a stacked ensemble learning approach combining 
SVM, KNN, and RF as base learners and LR as a metalearner. Stacking leverages the benefits of diverse 
algorithms: SVM's speed in high-dimensional spaces, KNN's locality-sensitive vocal cues, and RF's resistance 
to noise. The meta-learner then adjusts their collective predictions towards improved overall accuracy and 
generalizability (Wolpert, 2022). Our approach is evaluated on the widely used University of California Irvine 
(UCI) PD voice dataset, which includes 756 voice recordings from 131 patients and 64 controls, with 22 
acoustic features (e.g., jitter, shimmer, harmonic-to-noise ratio).  
 
2.0 Methodology  

The methodology employed in this study to predict Parkinson's disease from a voice dataset is explained 
in this chapter. The research process entailed data collection, preprocessing, feature selection, application of 
various machine learning models, and critical performance evaluation.  
 
2.1 Data Acquisition  

The data employed here in this research is an open access data set named "parkinsons" readily available 
on both Kaggle and GitHub. The data set includes 22 varied voice recordings from individuals with and 
without Parkinson's disease. All the recordings have been mapped as instances in the data set, totaling 195 
instances. The data set has a variety of features extracted from these voice recordings, which capture different 
aspects of vocal characteristics. Some of these features are: MDVP:Fo(Hz)- Average vocal fundamental 
frequency, MDVP:Fhi(Hz)- Maximum vocal fundamental frequency, Jitter:DDP- Difference of differences 
between cycles, divided by the average period, Shimmer:APQ3- 3 Point Amplitude Perturbation Quotient, 
NHR- Noise to Harmonic Ratio and PPE- Pitch Period Entropy among others  
 
2.2 Data Preprocessing  

Prior to the training of machine learning models, the data that was collected was put through several 
critical preprocessing steps to enhance its quality and suitability for analysis:  
 
Resampling of Data with SMOTE: To reverse any class imbalance in the data (i.e., an excess of instances of 
one class over the other), the Synthetic Minority Over-sampling Technique (SMOTE) was employed.  
SMOTE accomplishes this by creating synthetic examples of the minority class by interpolation between true 
minority class samples. By doing this, the class distribution is equalized, and the machine learning algorithms 
are prevented from becoming biased in the majority class (Chawla et al., 2002). The resampling was employed 
before the train-test split, so as to enable even distribution of the resampled instanced during splitting when 
the label was stratified.  
Normalization with Min-Max Scaling: To avoid features with different scales dominating the performance 
of machine learning models, Min-Max scaling was applied. This normalization technique scales all feature 
values between 0 and 1 using the following formula in Equation 1: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
  

where (X) is the original feature value, (X_{min}) is the minimum feature value across the dataset, and 
(X_{max}) is the maximum feature value across the dataset.  
 
2.3 Machine Learning Models for Parkinson's Disease Prediction  

This study investigated the performance of five machine learning models, unique in their nature, for 
Parkinson's disease prediction based on preprocessed voice data:  

i. K-Nearest Neighbor (KNN): KNN is a non-parametric instance-based learning technique that 
categorizes new points on the basis of the majority class among their (k) closest neighbors in 
feature space. The reason why KNN was applied is because of its ease, good performance when 
dealing with intricate decision boundaries, and proficiency when dealing well with datasets 
containing an irregular decision boundary (Ozturk & Ozturk, 2020). A (k=3) value was utilized 
in this study. 

ii.  Logistic Regression (LR): LR is a linear classifier that makes predictions for a binary outcome 
(the presence or absence of Parkinson's disease, for instance) on the basis of a sigmoid function. 
LR is selected as the baseline (meta) model as it is explainable, fast, and has the ability to capture 
the linear relationship between the features and the target variable.  

iii. Support Vector Machine (SVM): SVM is a fast supervised machine learning algorithm for 
finding the best hyperplane with the maximum class margin that individually delineates the 
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points of different classes in an arbitrary high-dimensional feature space. SVM was chosen on the 
merit of its ability to handle high-dimensional data as well as providing a good prediction from 
unseen data when the boundary is nonlinear through kernel functions (Gozem et al., 2019). A 
radial basis function (RBF) kernel was used for the SVM model in this study.     

iv. Random Forest (RF): Random Forest is an ensemble method that creates many decision trees 
during training and makes the mode of the classes (for classification) or the mean prediction (for 
regression) of the trees. RF was selected due to its resistance to overfitting, its high ability to cope 
with the number of features, and its ability to detect complex non-linear data relationships 
(Pereira et al., 2018).  

v. Stacked Ensemble Learning: Stacked ensemble learning is a meta-learning technique where the 
output of multiple base models is combined by using a meta-learner. A stacked ensemble was 
constructed in this study by using KNN, SVM, and Random Forest as base models, and Logistic 
Regression as the meta-learner. The base models were first trained using the training set, and their 
predictions on the validation set were then used as input features to train the Logistic Regression 
meta-learner.  
Stacked ensemble learning was used to leverage the differential strengths of the individual base 
models and potentially enhance prediction accuracy and reliability by learning the optimal way 
to blend their predictions (Wolpert, 1992). The algorithmic implementation of the stacked 
ensemble learning approach is represented in Algorithm 1 where step by step approach of 
implementing this approach for prediction of Parkinson disease were carefully highlighted.   

 
This whole implementation of the model and feature selection was done using Python 3.9v in Google 

Collab environment due to its sophisticated cloud computing functionality. 
 

Algorithm 1: Stacked Ensemble Learning for Parkinson’s Prediction 
Input: 
  D: Original Dataset (Features X, Target Y) 
  Base_Models_Types: [SVM, Random Forest, K-Nearest Neighbors] 
  Meta_Model_Type: Logistic Regression 
  Train_Test_Split_Ratio: Ratio for initial train/test split (e.g., 0.8 for training) 
  Meta_Train_Split_Ratio: Ratio for splitting the main training set to create meta-model 
training data (e.g., 0.7 for base model training) 
Output: 
  Final_Predictions: Predicted labels for the Final Test Set (X_test_final) 
1.  Initial Data Split (Overall Hold-out): 
    Split the original dataset D into two main sets: 
    (X_train_main, Y_train_main)  // Used for training all models (base and meta) 
    (X_test_final, Y_test_final)  // The final unseen test set for overall evaluation 
    (Ensure this split is stratified to preserve target class proportions.) 
2.  Initialize Meta-Feature Matrices: 
    Initialize Meta_Features_For_Meta_Train: An empty matrix to store predictions from 
base models for training the meta-model. Its dimensions will be (len(X_train_meta_input) 
x num_base_models). 
    Initialize Meta_Features_For_Final_Test: An empty matrix to store predictions from base 
models for predicting on the final test set. Its dimensions will be (len(X_test_final) x 
num_base_models). 
3.  Generate Meta-Features for Meta-Model Training (Level 0 - Internal Hold-out): 
    // This step creates "in-fold" predictions for the meta-model's training. 
    // It prevents data leakage by ensuring base models predict on data they didn't train on. 
    Split (X_train_main, Y_train_main) further into two subsets: 
    (X_base_train, Y_base_train)   // For training base models to generate meta-features 
    (X_meta_train_input, Y_meta_train_target) // Data for which meta-features will be 
generated 
    (Ensure this split is stratified.) 
    For each base_model_type in Base_Models_Types: 
        Create a new instance of base_model_type. 
        Train this base model on (X_base_train, Y_base_train).  
        Generate predictions (probabilities or raw outputs) for X_meta_train_input. 
        Add these predictions as a new column to Meta_Features_For_Meta_Train. 



Omodunbi et al. (2025)               Volume 2, Issue 2: 127-134 

Received: 06-04-2025 / Accepted: 11-06-2025 / Published: 20-06-2025 130 
https://doi.org/10.70118/ujet.2025.0202.13 

4.  Generate Meta-Features for Final Testing (Level 0 - Full Training Set Predictions): 
    // This step generates predictions for the ultimate unseen test set (X_test_final). 
    // Base models are trained on the full main training set (X_train_main). 
    For each base_model_type in Base_Models_Types: 
        Create a new instance of base_model_type. 
        Train this base model on the *entire* (X_train_main, Y_train_main). 
        Generate predictions (probabilities or raw outputs) for X_test_final. 
        Add these predictions as a new column to Meta_Features_For_Final_Test. 
5.  Train Meta-Model (Level 1): 
    Create an instance of Meta_Model_Type (Logistic Regression). 
    Train the Meta_Model on Meta_Features_For_Meta_Train, with Y_meta_train_target as 
its true labels. 
6.  Generate Final Predictions: 
    Use the trained Meta_Model to generate Final_Predictions from 
Meta_Features_For_Final_Test. 

 
2.4 Gain ration for Feature Selection 

Effective feature selection is a critical step in building robust and efficient machine learning models, 
especially for complex diseases like Parkinson's where a large number of telemonitoring vocal features might 
be collected. Not all features contribute equally to the prediction task, and the presence of irrelevant or 
redundant features can introduce noise, increase computational cost, and potentially lead to overfitting. In 
this study, Gain Ratio was employed as the primary metric for feature ranking, aiming to identify the most 
discriminative vocal features for Parkinson's disease prediction. The stepwise approach in employing gain 
ratio is represented with Algorithm 2. 

 
Algorithm 2: Feature Selection using Gain Ratio Ranking 
Input: 
  D: Dataset (Features X, Target Y, where Y indicates Parkinson's presence) 
Output: 
  Ranked_Features: A list of features sorted by their Gain Ratio in descending order. 
1.  Calculate Global Entropy of Target Variable: 
    Calculate H_Y = Entropy(Y) 
    (Using the formula: H(Y) = - sum(p_i * log2(p_i)) for all classes i in Y) 
2.  Initialize Feature_Gain_Ratios: 
    Create an empty list to store tuples of (feature_name, gain_ratio). 
3.  For each Feature 'A' in X (the set of all features): 
    a.  Initialize Split_Values_Counts: A dictionary to store counts for each unique value of Feature 'A'. 
    b.  Initialize Sub_Dataset_Entropies: A dictionary to store entropy for each subset. 
    c.  For each unique_value 'v' in Feature 'A': 
        i.   Create Subset S_v where Feature 'A' == 'v'. 
        ii.  Calculate H_S_v = Entropy(Y for S_v). 
        iii. Store (v, H_S_v) in Sub_Dataset_Entropies. 
        iv.  Count occurrences of 'v' in Feature 'A' and store in Split_Values_Counts. 
    d.  Calculate Weighted_Avg_Entropy: 
        Weighted_Avg_Entropy = 0 
        For each unique_value 'v' in Feature 'A': 
            proportion_S_v = Split_Values_Counts[v] / len(D) 
            Weighted_Avg_Entropy += proportion_S_v * Sub_Dataset_Entropies[v] 
    e.  Calculate Information Gain (IG_A): 
        IG_A = H_Y - Weighted_Avg_Entropy 
    f.  Calculate Split Information (SplitInfo_A): 
        SplitInfo_A = 0 
        For each unique_value 'v' in Feature 'A': 
            proportion_S_v = Split_Values_Counts[v] / len(D) 
            // Handle log2(0) case: if proportion_S_v is 0, this term is 0. 
            If proportion_S_v > 0: 
                SplitInfo_A -= proportion_S_v * log2(proportion_S_v) 
    g.  Calculate Gain Ratio (GR_A): 
        If SplitInfo_A == 0: 
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            GR_A = 0  // Avoid division by zero, or assign a very small value if IG_A > 0 
            If IG_A > 0: 
                GR_A = IG_A // In some implementations, if SplitInfo is 0 but IG is positive, GR is IG. 
        Else: 
            GR_A = IG_A / SplitInfo_A 
    h.  Add (Feature_A_Name, GR_A) to Feature_Gain_Ratios. 
4.  Rank Features: 
    Sort Feature_Gain_Ratios in descending order based on their Gain Ratio values. 
5.  Print Ranked Features: 
    Output the sorted list of features with their corresponding Gain Ratio scores. 

 

2.5 Performance Evaluation  
The performance of all the machine learning models was evaluated using the hold-out evaluation 

technique. Using this technique, the dataset was separated into two distinct sets: a training set (70%) to train 
the models and a test set (30%) to evaluate their performance on unseen data. The data was separated so that 
the models were tested on data they were not trained on, providing a better estimate of their generalization 
capability. The performance of the models was evaluated using the following standard classification metrics:  

i. Accuracy: The ratio of the instances correctly classified over the total number of instances.  
ii. Precision: The ratio of positive predictions that were true over all positive predictions.  
iii. Recall: The ratio of positive predictions that were true over all actual positive instances.  
iv. F1-Score: The harmonic mean of precision and recall, which provides a well-balanced estimation 

of the model's performance, particularly when classes are imbalanced.  
These were calculated for each model on the held-out test set to quantify their capacity for predicting 
Parkinson's disease from the selected voice features.  
 
3.0 Results and Discussion  

This chapter presents the findings of the experimental analysis conducted in this study, encompassing the 
performance of the K-Nearest Neighbor, Logistic Regression, Random Forest, and Stacked Ensemble machine 
learning algorithms in predicting Parkinson’s disease based on voice data. The results are presented through 
quantitative metrics, followed by a detailed discussion and interpretation of the findings in accordance with 
the research objectives and literature.  The features ranked by the Gain ratio is presented in Table 1 for easier 
representation so as to show the raking of the features in the dataset used in this study. Only the top 10 features 
were considered in this study as the other features were not considered as they did not have major 
contribution to the prediction of Parkinson’s disease. The first top 5 features as ranked by Gain ratio was 
experimented with and the experimental result is presented in Table 2.  
 

Table 1: Features as ranked by Gain Ratio 
Ranking Gain Ratio (Features) 

1 'MDVP:Flo(Hz)' 
2 'spread1' 
3 'MDVP:APQ' 
4 PPE' 
5 NHR' 
6 'spread2', 
7 'MDVP:Fhi(Hz)' 
8 'MDVP:RAP' 
9 'Jitter:DDP', 

10 'MDVP:Shimmer' 
 
The K-Nearest Neighbor (k=3) algorithm takes the lead with a very high average accuracy, precision, F1-

score, and recall of 91.0%. This means that with the top 5 features chosen by Gain Ratio, the points for 
individuals with and without Parkinson's disease would likely be well separated in the feature space.  
KNN as a non-parametric algorithm can readily learn complex decision boundaries if such separations exist 
based on the chosen features. The consistently high scores on all measures indicate an even performance with 
minimal false positives and false negatives. Conversely, Logistic Regression had a relatively much lower 
overall average performance across all the measures at around 74.0-74.2%. Logistic Regression is a linear 
model, and its relatively poorer performance shows that the relationship between the top 5 features and the 
presence of Parkinson's disease might not be purely linear. Although still producing a reasonable accuracy in 
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prediction, its failure to pick up potentially non-linear relationships in the voice data shows itself when 
compared to KNN.  

The Random Forest algorithm had a significant superiority over Logistic Regression with an average 
accuracy of 87.6%, precision of 88.0%, F1-score of 88.0%, and recall of 88.0%. Random Forest is an ensemble 
decision tree learning method that can model complicated non-linear relationships and possess high 
resistance to overfitting. The superior performance compared to Logistic Regression supports the potential 
that non-linear associations between the selected features are crucial in predicting Parkinson's disease. 
Interestingly, the Stacked Ensemble model, the focal point of this research, achieved a performance 
remarkably close to the  
Random Forest model, with average accuracy of 87.6%, precision of 88.0%, F1-score of 88.0%, and recall of 
88.0%. While in ensemble methods, particularly in stacking, there is an expectation that improved 
performance can be achieved through combining the strengths of different base models, in this specific 
experimental setting where there were only the top 5 features under Gain Ratio ranking, the Stacked Ensemble 
failed to deliver much of an improvement over the Random Forest.   

There are a number of reasons for this discovery. Firstly, the Gain Ratio's top 5 chosen features may 
already contain enough discriminatory information for one strong model such as Random Forest to 
successfully exploit. The extra complexity of the Stacked Ensemble, which is likely aggregating the predictions 
of several base learners (including perhaps Random Forest itself or models with the same underlying 
dynamics), may not have captured much more sophisticated patterns using this restricted feature set. Perhaps 
the base models within the ensemble were already performing at a near-optimal level using the information 
contained within these five features, and as such, the potential for the meta-learner within the stacked 
ensemble to provide substantial added value was limited.  

Further, the choice of base learners for the Stacked Ensemble and how the meta-learner is trained are also 
very critical. The specific choice of models in the ensemble or training parameters may not have utilized the 
individual strengths of the base learners to the best in the framework of these selected features.  

The consistent good performance of KNN and Random Forest/Stacked Ensemble suggests that Gain 
Ratio feature selection was effective in choosing a subset of highly relevant features from the voice dataset for 
the prediction of Parkinson's disease. The observation that there is little gain with Stacked Ensemble over 
Random Forest informs us that exploration is still required. Generally, although the top 5 selected features by 
the gain ratio had supported effective prediction of Parkinson's disease through KNN and Random Forest 
algorithms, the Stacked Ensemble in this instance was unable to display much significant gain. This is a 
testament to the importance of best feature choice and the fine nuanced nature of ensemble learning, where 
the potential of stacking could be larger using a stronger set of features or different combination of base 
models.  
Similarly, the Top 10 features as ranked by Gain ratio was further experimented with to compare their 
performance as presented in Table 3  
 

K-Nearest Neighbor (k=3) classifier also showed a huge performance improvement with a mean accuracy 
of 94.4%, precision of 95.0%, F1-score of 94.0%, and recall of 94.0%. This demonstrates that the 5 additional 
features, when considered by the KNN classifier, further enhance the separability between the classes within 
the feature space, thereby leading to more accurate classifications. The slight improvement in precision 
(95.0%) also suggests fewer false positives. Logistic Regression also had a boost in its performance metrics, 
with a mean accuracy of 78.7%, precision of 79.0%, F1-score of 79.0%, and recall of 79.0%. While still the worst 
performing algorithm of the ones tried, the improvement from approximately 74% to near 79% suggests that 
the additional features provided more linearly separable information or helped the linear model better 
approximate the relationship between the voice features and Parkinson's disease.  

The Random Forest algorithm's performance also improved, achieving an average accuracy of 91.0%, 
precision of 91.0%, F1-score of 91.0%, and recall of 91.0%. This indicates that the inclusion of more of the top-

Table 3: Experimental results of the top 10 features as ranked by Gain ratio  
S/N  Algorithms  Avg. 

Accuracy (%)  
Avg. 
Precision (%)  

Avg. F1- 
Score (%)  

Avg. Recall 
(%)  

1  K-Nearest Neighbour  
(k=3)  

94.4  95.0  94.0  94.0  

2 Logistic Regression 78.7 79.0 79.0 79.0 
3 Random Forest 91.0   91.0   91.0   91.0   
4 Stacked Ensemble 95.7 95 96 96 
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ranked features allowed the ensemble of decision trees to learn a better and more accurate model, one capable 
of detecting more complex patterns in the data. That all the metrics consistently improved is a testament to 
the effectiveness of Random Forest for this classification task. Most remarkably, the Stacked Ensemble model 
had a tremendous performance increase when trained with the top 10 features. In particular, it achieved an 
average accuracy of 95.7%, precision of 95.0%, F1-score of 96.0%, and recall of 96.0%. This result is a clear 
outperformance of all the base models explored during this study, including the Random Forest that had 
earlier recorded comparable performance.  

As is evident from the table, increasing the number of top features from 5 to 10 led to the enhancement of 
the average accuracy for every algorithm. The most improvement (8.1%) was exhibited by the Stacked 
Ensemble, jumping from the level of Random Forest performance to the highest accuracy among all models 
attempted. This strongly suggests that the remaining five features contained helpful, complementary 
information that was indeed leveraged by the Stacked Ensemble via its collective learning process. The meta 
learner of the ensemble likely benefited from the denser feature space to distinguish better among the 
predictions of the base models and hence achieve greater overall performance. The across-the-board boost for 
the Stacked Ensemble with the top 10 features indicates a more robust, stable prediction model with the top 
10 features. This addresses the importance of feature selection and the idea that while the top 5 features were 
a good starting point, incorporating more of the highest-ranked features by Gain Ratio adds significant value 
to the model's ability to distinguish between those with and without Parkinson's disease based on their voice 
features.  

These findings point to the potential of the Stacked Ensemble learning technique for Parkinson's disease 
prediction based on voice data, particularly if coupled with an effective feature selection technique like Gain 
Ratio that chooses a sufficient number of relevant features. The dramatic improvement with the top 10 features 
invites closer inspection of the optimal number of features and the respective contributions of the features to 
the Stacked Ensemble model's enhanced predictive power. Future research can explore even larger sets of top-
ranked features and more closely analyze the interactions and relative contributions of the individual features 
within the ensemble framework.  
 
4.0 Conclusion   

This research study investigated the efficacy of a stacked ensemble learning approach in Parkinson's 
disease prediction using a voice dataset. The primary aim was to achieve the highest prediction accuracy by 
combining the strengths of different base machine learning models, such as K-Nearest Neighbor, Support 
Vector Machine, and Random Forest, with Logistic Regression as the meta-learner. The effect of feature 
selection, employing Gain Ratio to determine the 5 and 10 most prominent features, was also tested. The 
experimental results unequivocally prove the efficacy of the approach. The Stacked Ensemble learning model 
universally performed better than the individual machine learning models in all test metrics when trained on 
the 10 features chosen by Gain Ratio, recording the highest mean accuracy, precision, F1score, and recall. 
Furthermore, the study discovered that applying the top 10 features resulted in a significant improvement of 
prediction performance for all algorithms used, such as the Stacked Ensemble, compared to applying the top 
5 features. This points to the importance of selecting an appropriate number of significant features in sound 
Parkinson's disease prediction.  

The better performance of the stacked ensemble suggests that by making smart use of heterogeneous base 
model predictions, the meta-learner had managed to discern more subtle patterns and nuances of meaning in 
the voice data typical of Parkinson's disease than any single individual model was capable of under its own 
independent initiatives. Such a finding highlights the application of ensemble learning techniques, with 
stacking being pre-eminent among them, for enhancing the accuracy and reliability of vocal biomarker-based 
automated PD diagnostic systems. This research contributes to current literature on the application of machine 
learning to early and non-invasive detection of Parkinson's disease. By the demonstration of concept of a 
specific stacked ensemble architecture and the positive impact of using a greater number of highly applicable 
features derived with Gain Ratio, this research provides valuable information for future development and 
research in this context. The subsequent work would further investigate the influence of including even more 
top-ranking features, and studying various base learner-meta-learner combinations under the stacked 
ensemble. Further investigations into other innovative feature selection algorithms are also on the agenda. It 
would be a key milestone towards developing practicable and credible tools for the screening and diagnosis 
of Parkinson's disease to extend the assessment of the proposed framework's generalizability on alternative 
voice datasets as well as under real-world clinical conditions.  
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