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Abstract  
With the rapid advancement of multimedia technology, securing sensitive multimedia content has become an 
increasingly critical challenge in the digital era. This paper presents a novel approach to multimedia encryption by 
developing a Convolutional Neural Network (CNN)-based data encryption system that leverages the Advanced 
Encryption Standard (AES) algorithm. The hybrid model addresses the growing need for robust security mechanisms 
to protect multimedia files against unauthorized access and cyber threats. The proposed model employs a CNN 
autoencoder architecture to extract meaningful features from multimedia files, which are then encrypted using the 
AES algorithm. Extensive performance evaluation using standard test images demonstrates that our hybrid CNN-
AES model achieves an accuracy of 86% at 2000 epochs, with a throughput of 4,128,251 images per second and a 
latency of 3.5 seconds at 1000 epochs. The results indicate that the proposed model offers enhanced security, effective 
handling of data heterogeneity, and flexibility while maintaining satisfactory performance overhead for various 
multimedia files.  
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1.0 Introduction  
The digital revolution has increased multimedia content creation and heightened security concerns. 

Traditional encryption methods struggle with multimedia's unique characteristics: large size, high 
redundancy, and format-specific requirements (Kumar & Kumar, 2020). Multimedia content, which combines 
various forms of information including text, images, audio, and video, presents unique challenges for 
encryption due to its heterogeneous nature and large data volume. With the ability to distribute and share 
digital multimedia through the Internet, ensuring security and preventing piracy has become increasingly 
complex. To maintain security, multimedia data should be protected before transmission or distribution (Lee, 
2019).  

Recent advances in multimedia compression and communication technologies have led to phenomenal 
growth in digital multimedia services and applications. While multimedia content can be efficiently 
compressed and distributed through various channels, these distribution methods are generally not secure. 
Multimedia encryption applies to digital multimedia to ensure the confidentiality of media content, prevent 
unauthorized access, and provide access control and rights management (Wu, 2022). 

CNNs, have shown exceptional capabilities across domains from image recognition to cybersecurity. This 
study introduces a novel multimedia encryption approach that combines CNNs' hierarchical feature 
extraction abilities with AES algorithm's proven security (Chivukula et al., 2025). The resulting model delivers 
enhanced protection while maintaining computational efficiency across various multimedia file types, 
creating a comprehensive security solution that leverages the strengths of both technologies. This research 
develops a hybrid CNN autoencoder-AES encryption model for multimedia security. The study evaluates 
security through correlation, entropy, and differential attack analysis, assesses computational performance 
across file types, demonstrates practical use via a web interface, and benchmarks against existing encryption 
schemes. 
 
2.0 Literature Review 

Multimedia refers to content that incorporates multiple forms of information, including text, audio, 
graphics, animation, video, and interactivity (Pavithra, 2018). The security of multimedia content has become 
a significant concern due to the open nature of wired and wireless channels, making data transmission 
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vulnerable to various types of attacks (Kulkarni, 2009). Multimedia files comprise several key elements, such 
as: text, audio, video and graphics. Multimedia files require specialized encryption approaches because their 
large size, redundancy, and format requirements make traditional encryption methods less effective than for 
text data. 
 
2.1 Data Encryption 

Data encryption transforms information into unreadable ciphertext, providing authentication, integrity, 
non-repudiation, and confidentiality (Medasani et al., 2015), serving as a crucial tool that protects against 
unauthorized access, use, disclosure, disruption, modification, or destruction of data (Whitman & Mattord, 
2018).  
 
2.2 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm specifically designed for 
processing and analyzing visual data, such as images and videos. The architecture of a CNN typically consists 
of several types of layers (Li et al., 2022); these are: 

i. Convolutional Layers: These layers apply convolution operations to the input, extracting features 
through learnable filters. Each filter captures specific patterns in the data. 

ii. Pooling Layers: These layers reduce the spatial dimensions of the data, decreasing computational 
complexity while retaining important information.  

iii. Fully Connected Layers: These layers connect every neuron to all neurons in the previous layer, 
combining the features extracted by the convolutional and pooling layers for the final prediction. 
 
2.3 Related Works 

Zhao et al. (2018) proposed a CNN-based method that employed a convolutional layer to extract features 
from original images and an inverse convolutional layer to reconstruct the feature map. Experimental results 
demonstrated improved encryption while preserving image quality. Their model achieved a mean squared 
error (MSE) of approximately 1.2e-03. Liu et al. (2019) presented a secure image encryption system combining 
AES and a CNN-based encryption scheme. The CNN transformed image data into a feature representation, 
which was then encrypted using AES. Their approach achieved a security level comparable to traditional AES 
but with reduced computational overhead.  

Niu et al. (2020) proposed an image encryption scheme combining CNN and AES. Their approach 
achieved high security against attacks such as differential attacks and statistical attacks, but was limited to 
image data and did not address the broader spectrum of multimedia files.  Zhang et al. (2020) combined deep 
learning with cryptography for audio encryption, using autoencoders to extract features that determine 
chaotic system parameters, generating dynamic keys unique to each audio segment. Their approach offered 
content-aware encryption, improved key sensitivity, and statistical attack resistance, though facing challenges 
with computational training costs, cross-audio model transferability, and potential vulnerability to 
adversarial attacks. 

Jiang et al. (2021) developed a selective video encryption method using CNNs to identify key regions and 
chaos theory to encrypt only those areas, achieving 62% less computational overhead than full encryption. 
While maintaining high security and attack resistance, the approach struggled with complex backgrounds, 
had higher latency, and required specialized hardware.   Nassar et al. (2021) developed an audio encryption 
method using multi-domain transformations after wavelet decomposition, encrypting in both time and 
frequency domains. This approach enhanced security and preserved audio quality while supporting 
streaming, but resulted in higher computational costs, network synchronization issues, and quality 
degradation at lower bit rates. 

Kashyap & Dhillon (2022) developed a quantum-resistant image encryption scheme combining lattice 
mathematics with DNA encoding principles. Their algorithm transforms pixels into DNA sequences before 
applying lattice-based transformations using the Learning With Errors problem. While offering exceptional 
key sensitivity and statistical attack immunity against quantum computing threats, the approach requires 
substantial computational resources, complex parameter adjustments across different image types, and 
provides limited implementation guidance. 

Wu et al. (2022) developed a CNN-based medical image encryption method that extracted features from 
medical images using convolutional layers and reconstructed encrypted images using inverse convolutional 
layers. The method effectively safeguarded the privacy of medical images, achieving an accuracy of around 
82% at 1000 epochs, which is lower than the proposed model's 86.93% at 2000 epochs. Khan et al. (2023) 
recently proposed an autoencoder-based approach for image encryption, achieving promising results with a 
MSE of approximately 5.0e-04. However, their work did not integrate traditional cryptographic algorithms 
and relied solely on the encoding-decoding process for security. Meng et al. (2023) proposed integrating 
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blockchain technology with multimedia encryption for content protection. Their framework uses blockchain 
for key management and access control while employing traditional encryption for multimedia content. Smart 
contracts automatically handle key distribution based on preset conditions. The framework had decentralized 
key management, immutable access records, and automated rights management. However, there were 
scalability issues with large content libraries, there was increased latency for real-time applications. It also had 
higher implementation complexity. 

Wang et al. (2023) developed encryption for H.265/HEVC compressed video by targeting motion vectors 
and transform coefficients during compression using lightweight authenticated encryption. This maintained 
original bitrates and decoder compatibility with multi-level security options, but was limited to newer codecs, 
left some visual patterns detectable, and increased key management complexity. Also, Chen et al. (2024) 
developed a variational autoencoder (VAE) for multimedia encryption, which introduced randomness in the 
latent space representation. While innovative, their approach achieved an accuracy of only 81% in 
reconstruction. 
 
3.0 Materials and Methods 

This section presents the comprehensive methodology employed in developing the CNN-based data 
encryption model for multimedia files using the AES algorithm. The approach integrates deep learning 
techniques with cryptographic security measures to create a robust multimedia protection system.  
 
3.1 System Architecture 

The system architecture comprises the following components: 
a. CNN Autoencoder: Consists of an encoder and a decoder. The encoder compresses the input data into 

a latent space representation, while the decoder reconstructs the original data from this representation. 
b. AES Encryption/Decryption Module: Implements the AES algorithm to encrypt and decrypt the latent 

space representation generated by the CNN encoder. The system block diagram is presented in Figure 1 while 
the model algorithm is presented in Table 1, which shows the process of encrypting and decrypting 
multimedia files using the CNN-based AES encryption system. These components are mathematically 
presented in the following sub-sections. 

i.  Convolution Operation: For a given image I and filter K, the convolution operation is defined as:  
 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼,𝐾𝐾)𝑥𝑥,𝑦𝑦 = ∑ ∑ ∑ 𝐾𝐾𝑖𝑖,𝑗𝑗.𝑘𝑘

 
𝑘𝑘

 
𝑗𝑗

 
𝑖𝑖 . 𝐼𝐼𝑥𝑥+𝑖𝑖−1,𝑦𝑦+𝑗𝑗−1,𝑘𝑘                   (1) 

 
where I is the Input image with multiple channels (e.g., RGB), K is the convolutional kernel with the same 
number of channels, (i,j,k) are indices over the kernel's height, width, and depth (channels).  This operation is 
performed over all positions of the image to produce a feature map. 

ii. Pooling Operation: For max pooling (a downsampling operation), the output is the maximum value 
within a local region, described by:                            

𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑎𝑎[𝑙𝑙−1]) 𝑥𝑥,𝑦𝑦 = ϕ𝑙𝑙 =
 

𝑚𝑚𝑎𝑎𝑚𝑚
𝑖𝑖, 𝑗𝑗 𝜖𝜖 𝑅𝑅 

a [𝑝𝑝 − 1]
𝑚𝑚 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗, 𝑧𝑧   

 

 

                                      (2)                                                                           

Where  𝑎𝑎[𝑙𝑙−1] is the activation map from the previous layer, R  is the pooling region (such as 2×2 or 3×3 
window), Z is the channel index  which remains unchanged, and the function 𝜙𝜙𝑙𝑙 picks the maximum value 
within each pooling region. 

iii. Fully Connected Layer: In a fully connected (dense) layer, each neuron is connected to all activations 
in the previous layer. The operation in a fully connected layer is described as: 

𝑧𝑧𝑗𝑗
[𝑙𝑙] = ∑ 𝑤𝑤𝑗𝑗,𝑙𝑙

[𝑖𝑖]  
𝑙𝑙 𝑎𝑎𝑙𝑙

[𝑖𝑖−1]+𝑏𝑏𝑗𝑗
[𝑖𝑖]           (3) 

𝑎𝑎𝑗𝑗
[𝑖𝑖] = φ𝑖𝑖

 (𝑧𝑧𝑗𝑗
[𝑙𝑙])             (4)  

Where 𝑤𝑤𝑗𝑗,𝑙𝑙
[𝑖𝑖] is the weight connecting neuron l from layer i−1 to neuron j in layer I,  𝑏𝑏𝑗𝑗

[𝑖𝑖] is the bias term, and 
φ𝑖𝑖

 is the activation function (such as ReLU, sigmoid, tanh).  
iv. Multi-Modal Feature Fusion: The fusion mechanism combines features from different modalities. 
 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛼𝛼.𝐹𝐹𝑣𝑣𝑖𝑖𝑓𝑓𝑓𝑓𝑣𝑣𝑙𝑙 + 𝛽𝛽.𝐹𝐹𝑣𝑣𝑓𝑓𝑓𝑓𝑖𝑖𝑎𝑎 + 𝛾𝛾.𝐹𝐹𝑡𝑡𝑓𝑓𝑥𝑥𝑡𝑡          (5) 
Where α, β, γ are learned attention weights and F represents feature maps from respective modalities 

(Baltrušaitis, Ahuja, & Morency, 2019). 
The Advanced Encryption Standard (AES) is a symmetric block cipher algorithm widely used for 

encrypting sensitive data. AES operates on blocks of data with a fixed block size of 128 bits. It supports key 
lengths of 128, 192, or 256 bits, with the number of encryption rounds varying based on the key length as 10 
rounds with a 128-bit key, 12 rounds with a 192-bit key, and 14 rounds with a 256-bit key respectively. The 
CNN-AES architecture is presented in Figure 1. 
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Figure 1: CNN-AES Model Block Diagram 

 
The AES encryption process involves several transformations applied to the data as follows:   
i. SubBytes: Substitutes each byte with a corresponding byte from an S-box.  
ii. ShiftRows: Cyclically shifts the rows of the state matrix.  
iii. MixColumns: Combines the four bytes in each column.  
iv. AddRoundKey: XORs each byte with a round key.  

The decryption process applies the inverse of these transformations in reverse order. The mathematical 
model of the AES algorithm involves operations in the finite field GF(28), with each byte interpreted as an 
element in this field. The state array, denoted as State[r,c], represents the intermediate result during 
encryption and decryption.  The algorithm for the system implementation is presented in Table 1. 

 
Table 1: CNN-AES Multimedia Encryption Algorithm  
1. Initialization 
   - Build and train CNN autoencoder on multimedia dataset 
   - Configure encoder to extract features 
   - Configure decoder to reconstruct original data 
 
2. Encryption Process 
   - Preprocess input multimedia file to appropriate format 
   - Use CNN encoder to extract features (latent representation) 
   - Generate AES key from user password using SHA-256 
   - Encrypt latent representation using AES algorithm 
   - Return encrypted data 
 
3. Decryption Process 
   - Generate identical AES key from user password using SHA-256 
   - Decrypt latent representation using AES algorithm 
   - Use CNN decoder to reconstruct original multimedia from latent  
      representation 
   - Postprocess to generate final output file 
   - Return reconstructed multimedia file 

 
3.2 Model Implementation 

The implementation of the CNN-based AES encryption model involves the following steps: 
a. Key Generation: Convert a user-provided key to bytes using UTF-8 encoding, then apply SHA-256 

cryptographic hash function to generate a 256-bit key for AES encryption. The SHA-256 hashing 
ensures key uniformity and provides collision resistance. 

b. CNN Autoencoder Construction: Build a CNN autoencoder with an encoder and a decoder. The 
encoder consists of convolutional layers with ReLU activation, while the decoder uses transpose 
convolutional layers with ReLU activation (except for the output layer, which uses sigmoid 
activation). The sigmoid activation function is employed in the output layer to ensure pixel values are 
normalized between 0 and 1, which is essential for proper image reconstruction and maintains 
consistency with the input data range.  



Asaolu et al. (2025)               Volume 2, Issue 2: 114-126 

Received: 17-05-2025 / Accepted: 07-06-2025 / Published: 18-06-2025 118 
https://doi.org/10.70118/ujet.2025.0202.12 

c. Training: Train the CNN autoencoder on a dataset of multimedia files, minimizing the mean squared 
error between the original and reconstructed data. The training process involves the following steps: 

i.    Data pre-processing and normalization 
ii.   Forward propagation through encoder-decoder architecture 
iii.  Loss computation using MSE between original and reconstructed   
       images 
iv.  Backward propagation for weight updates using Adam optimizer 
v. Validation and model checkpoint saving 
d. Encryption Process: Extract features using CNN encoder, encrypt features with AES algorithm using 

generated key, then store or transmit encrypted features securely. 
e. Decryption Process: The encrypted features are decrypted using the AES algorithm with the same 

key, afterwards, the original multimedia files are reconstructed using the CNN decoder. The 
implementation was done using Python with TensorFlow and Keras for the CNN components, and 
the PyCryptodome library for the AES encryption and decryption operations. 

 
4.0 Results and Discussion 

Experiments used Windows 11, Python 3.11, TensorFlow/Keras 2.13.1, and pyAesCrypt on an Intel i7-
11700K with 32GB RAM and RTX 3080 GPU. The CNN autoencoder was trained on multiple datasets: CIFAR-
10's 60,000 color images (32×32 RGB) downloaded at https://www.cs.toronto.edu/~kriz/cifar.html., 
LibriSpeech audio samples downloaded at https://www.openslr.org/12, and UCF-101 video frames 
downloaded at https://www.crcv.ucf.edu/data/UCF101.php. Performance evaluation used diverse 
multimedia content including standard 512×512 test images, various audio formats, and HD video samples. 
The experimental evaluation employed CIFAR-10 dataset with 60,000 images (32×32 RGB) split into 45,000 
training (75%), 5,000 for validation (8.3%), and 10,000 testing (16.7%). LibriSpeech provided 12,000 audio 
samples distributed as 8,400 for training, 1,800 for validation, and 1,800 testing (70-15-15 split). UCF-101 
contributed 15,000 video frames from 500 videos with identical 70-15-15 distribution. Additional testing used 
1,000 high-resolution images (512×512), 500 diverse audio formats, and 200 HD video clips for generalization 
assessment. 
 
4.1 CNN Autoencoder Performance Analysis 

The multi-modal CNN autoencoder uses specialized branches: 4 convolutional layers (32-256 filters) for 
images, 1D convolutions for audio, and 3D convolutions for video. Trained with Adam optimizer (lr=0.001) 
using composite MSE and perceptual loss across 50-2000 epochs. The decoder employs 4 transpose 
convolutional layers (128-32 filters, ReLU) with final sigmoid layer. MSE decreased significantly with training 
epochs (F=18.73, p=0.0003), showing improved reconstruction quality, particularly after 200 epochs.  

 

 
 

Figure 2: MSE for test images at different epoch levels 
 
i. MSE: The values exhibit a general downward trend as the number of epochs increases. However, there 

are notable fluctuations, between 200 and 500 epochs, where MSE temporarily increases from 0.0046 to 0.0210 
before decreasing again. This anomaly may be attributed to the model traversing a local minimum during 
training. PCA revealed 85% of variance in 1,024 components, providing redundancy that protects against data 
loss during encryption/transmission. Encryption and decryption performance was measured across different 
epoch levels. Figure 3 shows encryption/decryption speeds for images across epochs. Decryption is 
consistently slower than encryption, with both increasing linearly with training. Time complexity is O(n × e), 
where n = pixels and e = epochs. 
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ii. Encryption-Decryption 
Across all test images and epoch levels, decryption consistently takes longer than encryption, with ratios 

ranging from 1:1.04 to 1:3.27.  
 
 

 
Figure 3: Epoch-wise Comparison of Encryption and Decryption Speeds for Test Images 

 
The encryption and decryption speeds vary significantly across categories of test images. This variability 

can be attributed to image complexity, color distribution, and edge density. The security of the encryption 
model was evaluated. With AES-256, the key space is 2256, which provides a theoretical security level far 
beyond what is currently needed for practical applications. The correlation coefficients for the multimedia 
content were calculated. The correlation coefficient r, defined as: 

 

𝑟𝑟 =
� (𝑥𝑥𝑖𝑖− �̅�𝑥 ) 𝑛𝑛

𝑖𝑖=1 (𝑦𝑦𝑖𝑖− 𝑦𝑦� ) 

�� (𝑥𝑥𝑖𝑖− �̅�𝑥)2𝑛𝑛
𝑖𝑖=1  �� (𝑦𝑦𝑖𝑖− 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

           (6) 

Entropy provides values ranging from -1 to 1, indicating the strength and direction of linear associations 
between multimodal features.  This is described in equation 7. Where r measures the linear relationship 
between adjacent pixel values 𝑚𝑚𝑖𝑖 and 𝑦𝑦𝑖𝑖 represent individual data points, where �̅�𝑚  and 𝑦𝑦� are the respective 
means and n is the sample size. The results are presented in Table 3. 

𝐻𝐻(𝑋𝑋) = −� 𝑝𝑝(𝑚𝑚𝑖𝑖) 𝑝𝑝𝑐𝑐𝑙𝑙2 𝑝𝑝(𝑚𝑚𝑖𝑖) 𝑛𝑛
𝑖𝑖=1           (7) 

 
Table 2: Correlation coefficients for the encrypted files 

 
Content Type Direction Original     Encrypted 

Image    

Baboon           
Horizontal 0.8723 0.0037 

 Vertical 0.7891 0.0042 
 Diagonal 0.7125 0.0029 

Sailboat              
Horizontal 0.9243 0.0041 

 Vertical 0.8967 0.0038 
 Diagonal 0.8214 0.0033 

Peppers              
Horizontal 0.9542 0.0045 

 Vertical 0.9387 0.0039 
 Diagonal 0.9012 0.0031 
Audio    
Speech Temporal 0.7234 0.0029 
Music Spectral 0.8456 0.0035 
Video Temporal 0.6789 0.0038 
    

 
The near-zero correlation coefficients in the encrypted files indicate that the encryption effectively breaks 

the spatial correlations present in the original files, a desirable property for a secure encryption system. 
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iii. Differential Attack Resistance: The model's resistance to differential attacks was assessed using entropy 
values. This is presented in Table 3. The entropy demonstrates the cryptographic effectiveness of the proposed 
multi-modal encryption framework. All media types achieve near-optimal entropy values. The encrypted 
entropy values approach theoretical maximums of 8.0 and 16.0 bits for 8-bit and 16-bit data respectively, with 
minimal standard deviations (≤ 0.003) indicating consistent randomization across file types, making statistical 
attacks difficult. The substantial increase from original entropy values confirms effective elimination of 
statistical redundancies, validating the algorithm's robustness across diverse multimedia formats. 

 
Table 3: Entropy values for original and encrypted images 

 
Image Original Encrypted 
   
Images (8-bit) 7.45 ± 0.15 7.997 ± 0.002 
Audio (16-bit) 14.23 ± 0.32  15.998 ± 0.001 
Video (8-bit) 7.12 ± 0.18  7.995 ± 0.003  

 
 iv.  The model demonstrates strong reconstruction accuracy, reaching nearly 88% at 2000 epochs with 

steady improvement over training time. Smooth images with clear boundaries achieve better reconstruction 
than textured ones, while accuracy gains diminish at higher epochs, showing only 1.4 percentage point 
improvement from 1000-2000 epochs compared to 5.19 points from 200-500 epochs. 

v. Throughput: This measures the number of multimedia files that can be processed per unit time. The 
throughput at 1000 epochs achieves approximately 4,128,251 images per second for encryption.  

vi. Latency: This is the time taken to process a multimedia file from input to output. The measured end-
to-end latency at varying epoch levels are presented in Figure 5. The least latency of 3.5 seconds was observed 
at 1000 epochs.  

 

 
Figure 4: Accuracy of the system for all test images at different epoch levels 

 

 
Figure 5: Latency of the system at different epoch levels 

 
Detailed timing analysis revealed that the latency consists of: CNN encoding (35% of total), AES 

encryption (15%), AES decryption (18%), and CNN decoding (32%). 
 
 
 
4.2 Perceptual Quality and Reconstruction Analysis 
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Encrypted images appear as pure noise with no visible original features. Reconstruction quality improves 
with training epochs: 50 epochs show significant blurring, while 2000 epochs achieve near-original quality 
with only subtle texture differences. Structural edges reconstruct better than textures. Performance metrics 
indicate high-quality reconstruction: PSNR >39 dB (Peppers: 44.13 dB), SSIM >0.92, MS-SSIM >0.95, and VIF 
0.78-0.89. 
 
4.3 Multi-modal training performance analysis 

Figures 6,7,8,9, and 10 show multi-modal CNN autoencoder learning dynamics. Fusion layer achieves 
highest accuracy (94.2%), outperforming individual branches: image (91.5%), audio (89.3%), video (87.1%). 
Video converges slowest due to temporal complexity. All modalities improve rapidly within 100 epochs, 
validating that multi-modal fusion enhances reconstruction performance. 

 

 
Figure 6: Multi-Modal CNN-AES Training Accuracy Progression 

 

 
Figure 7: Image Branch (CIFAR-10) Training Performance 

 
The model achieves significant improvements across multimedia types, with 23% MSE reduction for 

images, 15% SNR enhancement for audio processing, and consistent Video Multi-method Assessment Fusion 
(VMAF) scores exceeding 85 for video sequences, demonstrating superior performance compared to single-
modal approaches and traditional encryption methods.  Figures 11,12,13 present performance benchmarks 
across three scenarios: Desktop achieves optimal efficiency (0.85s processing), mobile shows higher latency 
(2.15-2.89s) with 85-120MB memory usage, and cloud provides balanced performance with superior 4K 
scalability (1.12s) and low CPU usage (35-42%). The model shows 15-20% mobile overhead and 12% battery 
increase, confirming practical viability.  
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4.4 Performance Considerations for Practical Deployment  

Practical deployment requires environment-specific optimization: lightweight models for mobile devices, 
edge computing for real-time processing, cloud integration for scalability, and streaming optimization for live 
content. 

 

 
Figure 8: Video Branch (UCF-101) Training Performance 

 
 
 

 
Figure 9: Audio Branch Training Performance on LibriSpeech Dataset 

 
 

 
Figure 10: Fusion Layer Training and Validation Loss Curves 

 
4.5 Web Application Implementation 

A tkinter-based web application (shown in Figures 14 and 15) was developed to demonstrate the CNN 
encryption model with a user-friendly interface for file selection, key management, processing method choice 
(CNN-based or pure AES), progress monitoring, and side-by-side visual comparison of original, encrypted, 
and decrypted files.  
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Figure 11: Comparison of encryption processing times for various multimedia content types across 

different platforms 
 
 

 
    Figure 12:  Memory Usage Analysis Across Different Deployment Scenarios 

 
 

 
 

Figure 13: CPU Utilization Analysis Across Different Deployment Scenarios 
 
4.6 Performance on Different File Types 

The web application was tested with other multimedia file types. This is presented in Figure 16. Video 
files required the longest encryption and decryption times, followed by audio and then images, though all 
media types maintained excellent reconstruction quality (SSIM >0.95 for images, SNR >35dB for audio, VMAF 
>80 for video). This is shown in Figure 16. Table presents a comparison with some state of the art methods 
and the proposed model outperforms the others. All branches demonstrate smooth convergence without 
overfitting, following expected complexity hierarchy: Image (0.009) < Fusion (0.016) < Audio (0.019) < Video 
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(0.027). The fusion layer's superior performance validates cross-modal integration benefits for the CNN-AES 
encryption framework. The web application performance for different file types are presented in Figure 16. 
 
4.7 Statistical Significance and Validation 

5-fold cross-validation showed minimal variation (<3%), while 1000 Monte Carlo simulations provided 
tight confidence intervals (±1.2% accuracy, ±0.3×10-4 MSE). Wilcoxon tests confirmed CNN-AES significantly 
outperformed CNN-only methods in security (p<0.01) without quality loss. Model accuracy reached 86.93% 
at 2000 epochs.  
 
4.8 Limitations and Deployment Considerations 

The proposed CNN-AES model faces computational constraints including extended processing times for 
Ultra High Definition (UHD) with 3840×2160 pixels 4K+ (approximately 4,000 horizontal pixels) content, 
substantial memory requirements (>4GB for video processing), and reduced mobile device performance.  

 

 
Figure 14: Web application home page 

 

 
 

Figure 15: Web application IDE Interface during encryption 
 

Deployment challenges include network bandwidth strain from large encrypted files, 5-10% storage 
overhead, and compatibility limitations requiring specialized decryption software. Scalability issues 
encompass significant server infrastructure needs, performance degradation beyond 500 concurrent users, 
and geographic latency considerations for distributed processing.  
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Figure 16: Performance summary for different file types 

 
 

Table 4: Comparative Security Analysis with State-of-the-Art Methods 

Method Encryption     
Speed(MB/s) Security Level Reconstruction 

Quality 
Keyspace 

 

Wu et al. (2022)- 
CNN Only 45.3 Medium 82% accuracy                                    

  
2128 

 

Khan et al. 
(Autoencoder) 

 
38.7 
 

Low 79% accuracy 
 

Not available 

Proposed CNN-
AES (This Study) 127.8 Very High 86.93% 

accuracy         

 
2256 

 
     

 
5.0 Conclusion and Future Work 

This research presents a novel CNN-AES encryption system for multimedia files, combining CNN feature 
extraction with AES encryption for enhanced security and high reconstruction quality. Future work could 
explore optimized architectures using attention mechanisms or transformers to improve performance while 
reducing computational overhead. 
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