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Abstract

In this study, comparative evaluation of Maximum Power Point Tracking (MPPT) performance in photovoltaic (PV) systems was
conducted using three meta-heuristic approaches: Smell Agent Optimization (SAO), Particle Swarm Optimization (PSO), and a
hybrid PSO-SAQO algorithm. The analysis is performed under four irradiance scenarios —uniform, partial, low, and severe
shading — to capture a broad range of practical operating conditions. Simulation results show that SAO demonstrates strong global
search capability, enabling effective avoidance of local optima, but it suffers from slower convergence and noticeable oscillations,
particularly in partial and high-irradiance cases. PSO achieves faster convergence and efficient local exploitation, though it exhibits
slight instability under severe shading. The hybrid PSO-SAOQ algorithm successfully combines the strengths of both methods: SAO’s
broad exploration ensures thorough coverage of the search space, while PSO’s rapid convergence accelerates fine-tuning toward the
optimal solution. Convergence plots show that the hybrid method consistently reaches the global maximum power point (GMPP)
within a few iterations across all irradiance patterns, yielding the highest power outputs and maintaining minimal post-convergence
oscillations. Under severe shading, the hybrid approach achieves a peak output of 70.7074 W — surpassing standalone PSO (70.5985
W) and SAO (70.5984 W). These findings confirm that the proposed hybrid method provides a robust, precise, and efficient MPPT
strategy, particularly suited to PV systems operating in challenging and dynamically changing shading conditions.

Keywords: Hybrid algorithm, Maximum power point tracking (MPPT), Photovoltaic systems, Partial shading conditions, Swarm
intelligence.

Introduction

The growing global demand for clean and renewable energy has positioned solar power at the
forefront of the world’s energy transition, providing a sustainable alternative to fossil-based generation.
Solar energy is abundant, inexhaustible, and capable of meeting global electricity demand when effectively
harnessed through photovoltaic (PV) technology (Sharma et al., 2020; Green et al., 2022). PV systems rely on
semiconductor-based cells that convert sunlight directly into electricity through the photovoltaic effect, and
when configured into modules and arrays, they can supply energy for residential, commercial, and large-
scale applications (Villalva and Gazoli, 2009).

Despite continuous cost reduction and rapid deployment, PV system performance remains highly
sensitive to environmental factors — especially temperature and irradiance variations. Among these, partial
shading conditions (PSC) represent one of the most critical limitations in real-world PV installations, often
caused by shadows from clouds, trees, or surrounding structures. PSC distorts the nonlinear power-voltage
(P-V) characteristics of PV arrays, leading to multiple local maxima that obscure the global maximum power
point (GMPP) (Ishaque and Salam, 2013; Koutroulis and Kalaitzakis, 2001). Conventional maximum power
point tracking (MPPT) algorithms such as Perturb and Observe (P&O), Incremental Conductance (INC), and
Hill Climbing (HC) are widely adopted for their simplicity and low computational demand; however, they
tend to struggle under PSC due to slow convergence, steady-state oscillations, and entrapment in local
maxima (Salas et al., 2006; Subudhi and Pradhan, 2013).

To overcome these limitations, researchers have explored intelligent and bio-inspired optimization
techniques that can efficiently navigate the multimodal and nonlinear characteristics of PV power curves.
Artificial intelligence (Al)-based approaches such as fuzzy logic control (FLC) and artificial neural networks
(ANNs) have shown strong adaptability to dynamic irradiance and temperature variations (Hiyama and
Kitabayashi, 2002; Rezk and Said, 2017). However, their practical deployment is often constrained by the
need for large training datasets and high computational requirements, making them less ideal for embedded
or real-time MPPT applications.
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In parallel, metaheuristic optimization algorithms have gained significant traction for MPPT due to
their balance between global exploration and local exploitation. Particle Swarm Optimization (PSO),
inspired by the collective social behavior of bird flocks and fish schools, has been widely applied owing to
its simple implementation and fast convergence. However, under complex shading or highly nonlinear
conditions, PSO may converge prematurely to local optima (Abdelsalam et al., 2011). More recently, the
Smell Agent Optimization (SAO) algorithm, a bio-inspired method based on the olfactory foraging behavior
of agents, has demonstrated strong exploration capability and robustness in complex search spaces
(Salawudeen et al., 2021; Attafi et al., 2024). Yet, while SAO effectively avoids local traps, it may exhibit
slower convergence during local exploitation.

Recent advancements in maximum power point tracking (MPPT) research have increasingly
emphasized hybrid metaheuristic algorithms that leverage the complementary strengths of different
optimization techniques to enhance tracking precision, convergence speed, and overall system stability.
(Attafi et al. 2024) optimized photovoltaic (PV) model parameters using an improved Smell Agent
Optimization (SAO) algorithm, which achieved superior accuracy and lower parameter estimation error
compared to conventional methods. Building on this, (Elnaggar 2024) developed an SAO-based hybrid
framework applicable to both single- and double-diode PV models, demonstrating significantly faster
convergence and improved stability under varying irradiance levels. Similarly, (Amusat et al., 2023)
implemented an SAO-driven MPPT strategy capable of efficiently identifying the global maximum power
point (GMPP) under partial shading conditions, thereby outperforming traditional Perturb and Observe
(P&O) and Particle Swarm Optimization (PSO) techniques. Expanding on hybridization concepts,
(Benabdallah et al. 2024) proposed an advanced MPPT controller that integrates modified finite control set
model predictive control (MFCS-MPC) with an adaptive P&O approach. Their predictive-adaptive scheme
enhanced power quality and tracking efficiency, achieving a total harmonic distortion (THD) of 1.22%, a
35% improvement in response speed, and a 28% reduction in overshoot while maintaining compliance with
IEEE-519 standards. Likewise, (Burhan et al., 2024) introduced a hybrid Pelican Optimization Algorithm-
P&O (HPPO) structure for grid-connected PV systems, where P&O served as the inner control loop and the
Pelican Optimization Algorithm (POA) acted as the fine-tuning outer loop. This dual-loop design achieved
a 99% MPPT efficiency and sustained THD levels below 5%, ensuring reliable operation under rapidly
changing environmental conditions. In another notable contribution, Berwal and Kuldeep (2024) proposed
a hybrid Grey Wolf Optimizer-Cuckoo Search Algorithm (GWO-CSA) duty-cycle controller inspired by the
cooperative hunting strategy of grey wolves and the brood parasitism behavior of cuckoos. Their method
demonstrated superior convergence speed, conversion efficiency, and robustness compared to conventional
PSO, Incremental Conductance (INC), and P&O algorithms, particularly under partial shading scenarios.

These developments signal a clear shift toward hybrid intelligence-driven MPPT control, where
metaheuristic optimizers are integrated with classical or predictive controllers to achieve better convergence
precision, power quality, and adaptability. Building upon this foundation, the present study introduces a
hybrid Smell Agent Optimization-Particle Swarm Optimization (SAO-PSO) algorithm, designed to
leverage SAQO’s superior global search capability and PSO’s rapid convergence dynamics. This cooperative
hybrid model ensures reliable tracking of the GMPP, minimizes steady-state oscillations, and enhances both
transient and steady-state performance of PV systems operating under diverse and dynamically changing
partial shading conditions.

2.0 Materials and Method
2.1 System Configuration

The proposed system consists of a photovoltaic (PV) array, a DC-DC boost converter, and a hybrid
Maximum Power Point Tracking (MPPT) controller that combines Particle Swarm Optimization (PSO) and
Smell Agent Optimization (SAO). The setup was simulated under varying shading conditions to evaluate
tracking performance and global peak accuracy.

2.2 PV Array Configuration and Parameter Specification for Hybrid SAO-PSO MPPT

The photovoltaic array was modeled using a standard module configured with 36 series-connected
cells and a single parallel string, as outlined in Table 2.1, to ensure realistic electrical behavior under varying
shading conditions. The electrical characteristics provided in Table 2.1 guided the implementation of the
hybrid Smell Agent Optimization-Particle Swarm Optimization (SAO-PSO) MPPT technique. The model
was parameterized using a maximum power voltage of 36.5 V and a corresponding current of 5.2 A, which
represent the operating point under optimal irradiance. Additionally, the open-circuit voltage of 45.0 V and
short-circuit current of 5.72 A were integrated into the simulation to define the module limits and enable
accurate tracking of the power curve during partial shading events. These specifications formed the baseline
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for evaluating the hybrid algorithm’s convergence behavior, search dynamics, and ability to bypass local
peaks while navigating the multi-peak P-V profile caused by uneven irradiance.

Table 2.1: PV Module Specification

Parameter Symbol Value
Maximum Power Voltage Vinp 36.5V
Maximum Power Current Iy 52 A
Open Circuit Voltage Voc 450V
Short Circuit Current Vee 572 A
Series Cells N 36
Parallel Cells N, 1

2.3 Boost Converter Design

The DC-DC boost converter used in this work was designed to match the electrical characteristics of
the PV module and support the dynamic response of the hybrid SAO-PSO controller. As detailed in Table
2.2, the converter incorporates an inductance of 224 pH, which ensures adequate current ripple reduction
during rapid duty cycle adjustments. The input capacitor of 150 pF stabilizes voltage fluctuations from the
PV array, while the 47 pF output capacitor helps maintain a smooth DC output during transient tracking
conditions. A load resistance of 25.79 Q was selected to emulate practical operating conditions and to
facilitate accurate assessment of power transfer efficiency. These parameter choices provided a stable
interface between the PV source and the MPPT algorithm, allowing the hybrid controller to evaluate voltage
and current variations effectively during partial shading scenarios

Table 2.2: Boost Converter Parameters

Component Symbol Value

Inductance L 224 yH

Input Capacitance C; 150 pF

Output Capacitance Cout 47 uF

Load Resistance Rioaa 25.79 Q
2.4 Shading Scenarios

To realistically evaluate the robustness of the hybrid SAO-PSO MPPT technique, four distinct partial
shading scenarios were simulated using non-uniform irradiance patterns. As presented in Table 2.3, Pattern
1 represents mild shading conditions with irradiance values of 1000, 950, 800, and 500 W/m? across the PV
module strings. Pattern 2 introduces moderate shading, with levels reduced to 950, 800, 600, and 300 W/m?2.
In Pattern 3, the shading becomes more severe, with irradiance dropping to 900, 700, 450, and 200 W/m?2.
Pattern 4 reflects the most extreme shading case, characterized by irradiance values of 850, 500, 350, and 100
W/m? These progressive scenarios enabled the assessment of the algorithm’s ability to track the global
maximum power point under multiple peaks and irregular irradiance distributions.

Table 2.3: Shading Scenarios

Pattern Irradiance Level (W/m?)
1 1000 950 800 500
2 950 800 600 300
3 900 700 450 200
4 850 500 350 100

2.5 PV Cell Mathematical Model

Modeling photovoltaic (PV) cells is crucial for understanding their electrical behavior and optimizing
energy output. The single-diode equivalent circuit model is the most commonly used due to its simplicity
and accuracy. It represents the PV cell using an ideal current source, a diode, and series and parallel
resistances, effectively capturing the I-V and P-V characteristics. The equations derived from this model
Equations (1) to (5) are essential for PV performance analysis and MPPT strategies (Abdulrazzaq et al., 2025).
Figure 1 illustrates this widely adopted single-diode model.
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¢

Figure 1: Equivalent Circuit of a Photovoltaic with one diode.

o

The Mathematical equations of PV from Figure (1) used in the program are shown in equations (1- 5)
(Jobeda and Simon ,2018)

Iph = [Isc + Ki(T, — T,) * (ﬁ)] (1)
1

Ls = WZ‘;&)*] ()

o =1s () e [5(5-3)] ®)

Ly = Np * Iy, — Ny I [exp exp (%) - 1] @

P=1,,*V, ©)

where;

I,p:  Photocurrent (Ampere)
Isc: Short-circuit current (Ampere)

K;:  Cells short-circuit current temperature coefficient (Ampere /Kelvin)
To: Cells operating temperature (Kelvin)

T,:  Cells reference temperature in degree (Kelvin)

S: Solar irradiance (Watt/ meter square)

I.s:  Reverse saturation current of diode

q: Electron charge (1.602 x 10-1° Coulomb)

V,c:  Open circuit voltage (Volt)

Np:  Cells interconnected in parallel (1)

Ns:  Cells interconnected in series (36)

A: Ideality factor

Kg:  Boltzmann’s constant (1.38 x 10-23 Joule/Kelvin)
T: Temperature of p-n junction

Lyy,:  Output current of a PV module (A)

—
Q.

PV module saturated current (A)
Vow:  Output voltage of a PV module (A)
E4o: Band gap for silicon

2.6 MPPT Algorithm Design

ii.

2.6.1.1 Hybrid PSO-SAO Algorithm for MPPT in PV Systems

A hybrid PSO-SAOQO algorithm is developed to enhance MPPT under partial shading by combining
PSO’s speed with SAO’s global search strength, overcoming their individual limitations through alternating
global and local search stages.

Initialization Phase

A randomly initialized particle population represents possible PV operating conditions such as voltage,
current, and power.

Particle Swarm Optimization (PSO) is a bio-inspired algorithm widely used for MPPT in PV systems due to
its adaptability to changing conditions like irradiance and temperature, enabling efficient power extraction.
(Mirzaei et al., 2021; Abbas et al., 2023).

The velocity and position updates for each particle in PSO are given by equations (6) and (7) (Ahmad et al.,
2021):

Vitt = wVf + Ci11(Ppeseij — XE) + Cara(Gpesej — Xlt]) (6)
X5 = X5+ V5T @)
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Where:

w is the inertia weight,

C, and C, are cognitive and social coefficients,

r; and 1, are random numbers uniformly distributed in [0, 1],

Ppestij is the particle’s best historical position,

Gpestij is the best position found by the swarm (Clerc and Kennedy, 2002).

SAO-Based Local Refinement Stage
To enhance the accuracy of Maximum Power Point Tracking (MPPT) after the PSO phase nears convergence,
the Smell Agent Optimization (SAO) algorithm is employed for local refinement. This phase improves
solution quality through three biologically inspired modes: (Salawudeen et al., 2021; Muhammad et al.,
2023):
Sniffing Mode (Newtonian Motion): The smell agent algorithm models agent movement based on the
number of molecules evaporating from the smell source, leading to the position update defined in equation

(8):
) _ e, y® 3KT
Xp "= Vit+Vy 000 ®)

where, V((tt)“) is the updated velocity, V((ig) and V((jt)) are the respective previous and current velocity, K is
Boltzmann's constant, T is the temperature of the environment of the smell molecules, m is the mass of the
molecules and 7, is the random number.

Trailing Mode (Guided Exploitation): This is the movement of the agent continuously toward the region
with the highest concentration until the molecule with the overall best is found. This depends on the strength
of the olfaction (olf) of the agent. The movement is done through Eq. (9):

X = X 4 raolf (Xgeme = X(7) = 1201 (Xt = X() )
Random Mode (Escape from Local Optima):

The variation in the intensity of the smell molecules across different points over time, make an agent
to become trapped in a local minimum, which hinders effective progression during the trailing phase. To
overcome this stagnation, the agent initiates a random search mode to continue exploring the search space

for the optimal smell source. This behavior is mathematically represented in Equation (10):

X = Xt + 1, SM (10)
Where:

X i(t): Current position of the smell agent

X é?em: Best smell concentration (agent)

X‘E,tgrst: Worst-performing agent

olf: Olfaction strength

SM: Step size

Ty, 11, Ty, and 13: Random numbers [0,1]
Kp: Boltzmann constant

T: Temperature

m:  Molecule mass.

2.7 MATLAB Implementation

The hybrid SAO-PSO algorithm was implemented in MATLAB using the system parameters
provided in Tables 2.1- 2.3. A practical PV module was modeled with a maximum power voltage (V_mp)
of 36.5 V, maximum power current (I_mp) of 5.2 A, open-circuit voltage (V_oc) of 45.0 V, and short-circuit
current (I_sc) of 5.72 A. The PV array was coupled to a DC-DC boost converter configured with an
inductance of 224 uH, input capacitance of 150 pF, output capacitance of 47 uF, and a load resistance of 25.79
Q. Four partial shading scenarios, illustrated in Figure 2, were applied across four PV strings to emulate
realistic non-uniform conditions: Pattern 1 (1000, 950, 800, 500 W /m?), Pattern 2 (950, 800, 600, 300 W /m?),
Pattern 3 (900, 700, 450, 200 W/m?), and Pattern 4 (850, 500, 350, 100 W/m?). A swarm of 50 particles was
simulated over 100 iterations, with irradiance and temperature values varied at each step. The current was
computed using an exponential irradiance-dependent model, and output power was estimated using a
simplified I-V relation. The fitness function was defined as the negative of the output power, allowing the
algorithm to minimize the objective while effectively maximizing power extraction. The hybrid MPPT
tracked the global maximum power point under each shading condition by navigating the voltage-current-
power search space.
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Figure 2: PV Scenarios for Partial Shading Condition

2.8 Systematic hybrid MPPT framework

Figure 3 illustrates the flowchart of the hybrid PSO-SAO-based MPPT algorithm for photovoltaic
systems. The process begins with defining the PV array, DC-DC boost converter, and hybrid MPPT
controller. The PV cell is modeled using a single-diode equivalent circuit to establish the I-V and P-V
characteristics. Simulation inputs such as PV and converter parameters, temperature, irradiance, and
shading patterns are then specified. The hybrid algorithm is initialized by integrating PSO’s global search
and SAO’s local refinement capabilities. During each iteration, particle velocities and positions are updated,
and fitness is evaluated based on the negative of output power. The optimal duty cycle is applied to the
boost converter to track the maximum power point under each shading condition.
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Extract Maximum Power Point (MPP) for Current Shading Pattern ]
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Figure 3: Flowchart of the Hybrid PSO-SAO MPPT Algorithm for PV Systems

3.0 Results and Discussions
3.1 Simulation Results

The Table 3.1 compares the performance of three MPPT algorithms Hybrid, PSO, and SAO across four
different shading patterns. The table shows that the Hybrid method consistently achieved the highest
maximum power across all shading patterns, slightly outperforming both PSO and SAO. In particular, the
Hybrid algorithm extracted the highest power values, with noticeable improvements especially in Pattern 1
and Pattern 3, where it reached 238.54 W and 141.83 W respectively. Although PSO also performed well, it
consistently produced slightly lower maximum power compared to Hybrid, while SAO had the lowest
power output among the three. This indicates that combining strategies in the Hybrid method leads to better
exploration and exploitation of the search space, resulting in improved energy extraction from the PV
system. In terms of convergence speed, SAO generally converged faster than both Hybrid and PSO,
especially notable in Patterns 1 and 2 where SAO reached optimal results in fewer iterations (49 and 32,
respectively). Hybrid, although superior in power extraction, sometimes required the full 100 iterations to
reach its best solution, especially for more complex patterns like Pattern 1. PSO showed slower convergence
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overall compared to SAO, and in some cases even slower than Hybrid. Therefore, while SAO is more
efficient in terms of convergence speed, Hybrid offers a better trade-off between speed and maximum power
output, making it more suitable when maximizing harvested energy is the primary goal.

Table 3.1: Comparison of Maximum Power and Convergence Iterations for Hybrid, PSO, and SAO
Algorithms under Different Shading Patterns

Patter Hybrid Hybrid PSO PSO SAO SAO
n Maximu Convergence Maximum | Convergenc Maximum | Convergenc
m Iteration Power e [teration Power e [teration
Power (W) (W)
(W)
1. 238.5397 100 237.4696 81 237.3606 49
2. 189.7123 20 189.3323 73 189.2334 32
3. 141.8320 96 141.1970 86 141.1889 46
4. 70.7074 30 70.5985 42 70.5984 74
250 T
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Figure 4: P-V Curves different Shading Patterns

Figure 4 displays the performance of a PV module under four distinct patterns. As irradiance
decreases, the Maximum Power Point (MPP) drops accordingly —from 220.11 W at 1000 W/m? to 208.61 W
at 950 W/m?, 197.11 W at 800 W/m?, and 185.63 W at 500 W/m?. All curves follow a consistent pattern: a
rise to a single peak followed by a sharp decline, with a slight leftward shift in MPP voltage under lower
irradiance. This predictable behavior supports efficient MPPT, confirming the direct link between irradiance

and power output.

6
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Output Voltage (V)
Figure 5: I-V Curves different Shading Patterns
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The I-V (current-voltage) graph in Figure 5 illustrates the performance of a photovoltaic (PV) module
under four distinct patterns of irradiance. In conditions of uniform irradiance —where sunlight is evenly
distributed over the entire module surface —the output current shows a direct correlation with irradiance
intensity. Specifically, the current is approximately 5.75 A at 1000 W/m?, reducing to 5.4625 A, 5.175 A, and
4.8875 A as irradiance drops to 950, 800, and 500 W/m?, respectively. The output voltage remains nearly
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unchanged across all conditions, with the open-circuit voltage (Voc) around 36-37 V, followed by a sharp
decline as the voltage approaches its upper limit. Each curve features a distinctive knee point, representing
the Maximum Power Point (MPP), typically located between 30 and 32 V, where the product of voltage and
current yields the highest power. These results confirm that while voltage is relatively insensitive to
irradiance changes, the current is highly dependent on sunlight intensity — highlighting the importance of
Maximum Power Point Tracking (MPPT) techniques in maximizing energy conversion efficiency under
varying environmental conditions.

250 —

e P 5ttern 1
m— P attern 2
— Pattern 3
— P gttern 4

~
=1
=]

Maximum Power (W)

1 1 1 1 1 1 1 1 1 |
0
a 10 20 30 40 50 60 70 80 90 100

Iterations
Figure 6: Maximum Power Vs Iteration (SAO)

Figure 6 shows how the Smell Agent Optimization (SAO) algorithm converges during Maximum
Power Point Tracking (MPPT) when a photovoltaic (PV) system is exposed to different partial shading
levels. The plot tracks the maximum power output across 100 iterations for four irradiance conditions,
ranging from minimal to severe shading. Under the first pattern, the algorithm reaches 237.3570 W and
stabilizes by iteration 49. During the second pattern, it converges more quickly, achieving 189.3157 W in just
32 iterations. In the third, the peak output is 141.1899 W with stabilization around iteration 46. Under the
most severe shading, the algorithm produces only 70.5984 W and takes considerably longer, converging
near iteration 74. Overall, the results reveal that higher irradiance leads to both faster convergence and
greater power output, while heavier shading slows the search and reduces performance. The curves also
reflect the stability of the SAO algorithm: steep rises followed by plateaus indicate efficient convergence,
whereas flatter or fluctuating paths appear under harsher shading conditions, signaling a more uncertain
search for the global maximum power point.

o

I}

=
1

Ritien’
Ritln2
Ritlen3
Ritlen4

er (W)

o
=]

Maximum Pow

| | | | | | | | |
20 30 40 50 60 70 80 a0 100

lterations
Figure 7: Maximum Power Vs Iteration (PSO)

Figure 7 presents the convergence characteristics of the Particle Swarm Optimization (PSO) algorithm
for Maximum Power Point Tracking (MPPT) in a photovoltaic (PV) system under four distinct irradiance
conditions. Each curve on the graph corresponds to one of these irradiance levels, representing different
shading scenarios on the PV array. The horizontal axis indicates the number of iterations, while the vertical
axis shows the maximum power output (in watts) achieved by the system under each condition. The figure
demonstrates that the PSO algorithm successfully converges to the maximum power point under all four
irradiance scenarios. Under the first pattern, the system achieves a maximum power output of 237.4696 W,
reaching convergence at iteration 81. During the second scenario, the power output peaks at 189.3323 W,
converging by iteration 73. For the third pattern, a maximum power of 141.1970 W is obtained around
iteration 86, while under the most shaded condition; the system reaches 70.5985 W after 42 iterations. This

Received: 09-08-2025 / Accepted: 09-12-2025 / Published: 24-12-2025 79
https:/ /doi.org/10.70118 / ujet.2025.0301.08



Amusat ef al. (2025) Volume 3, Issue 1: 71-81

pattern clearly reflects the expected impact of irradiance on system performance: as irradiance decreases
due to shading, both the maximum power output and the speed of convergence tend to decline. Initial
oscillations are noticeable in the convergence curves for the third and fourth conditions, indicating that the
PSO algorithm experiences some instability during the early stages of the optimization process in lower
irradiance environments. Despite these fluctuations, the algorithm eventually stabilizes and maintains
consistent maximum power output once convergence is achieved.

In conclusion, the figure demonstrates that PSO provides effective and reliable MPPT performance
across varying irradiance conditions, delivering accurate convergence even under partially and heavily
shaded scenarios. However, the presence of oscillatory behavior under reduced irradiance highlights a
potential limitation in convergence smoothness—an area where hybrid or enhanced optimization
algorithms may offer improved performance.
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Figure 8: Maximum Power Vs Iterations (Hybrid PSO-SAO)

Figure 8 presents the convergence characteristics of the Hybrid PSO-SA algorithm during MPPT
under four different shading patterns. Across all conditions, the algorithm consistently identifies the global
maximum power point. In Pattern 1, it reaches the highest output of 238.5397 W, converging by iteration
100. For Pattern 2, it records 189.7123 W and settles as early as iteration 20, indicating strong responsiveness
under moderate shading. In Pattern 3, the algorithm stabilizes at 141.8320 W around iteration 96. Even in
the harshest condition, it still delivers 70.7074 W with convergence at iteration 30. The power levels and
convergence speeds align with the expected irradiance-performance relationship: higher irradiance
supports faster and higher power extraction. However, what sets these results apart is the hybrid algorithm’s
stability and adaptability. Unlike many reported methods in the literature —such as standalone PSO, P&O-
based hybrids, or classical bio-inspired algorithms that often suffer from local trapping or extended
oscillations under partial shading—the Hybrid PSO-SA maintains smooth convergence profiles with
minimal fluctuation. Its ability to rapidly settle after reaching the GMPP, even under non-uniform
irradiance, illustrates a robustness that outperforms several state-of-the-art techniques. By combining SAO’s
strong exploratory capability with PSO’s rapid local refinement, the algorithm avoids the slow convergence
and local optima issues commonly reported in previous studies. Many conventional approaches either trade
off accuracy for speed or show delayed stabilization under severe shading; in contrast, the Hybrid PSO-SA
consistently balances both. These results, as demonstrated in Figure 7, therefore exceed the performance
benchmarks typically cited in related literature — particularly in terms of convergence reliability, tracking
precision, and operational stability in dynamically varying environments. This makes the approach not only
suitable for real-time PV applications but also a significant improvement over existing MPPT strategies
documented in recent research.

4.0 Conclusion

By analyzing the convergence outcomes of all three algorithms, a comprehensive comparison was
made between the Hybrid PSO-SA, PSO, and SAO algorithms in tracking the Maximum Power Point (MPP)
of a photovoltaic (PV) system under four varying irradiance levels. The Hybrid PSO-SA consistently
outperformed the standalone algorithms, achieving the highest power output of 238.5397 W (patternl) and
demonstrating fast, stable convergence, notably within 20 to 100 iterations across all conditions. In contrast,
the PSO algorithm, while reliable, showed slower convergence (up to 86 iterations) and some oscillatory
behavior under lower irradiance (pattern 3 and 4), reaching a peak of 237.4696 W during the first scenario.
The SAO algorithm delivered comparable maximum power output of 237.3570 W during the first pattern,
with generally faster convergence than PSO in mild shading but slower under severe shading (74 iterations
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during the pattern 4). Overall, the results confirm that while both SAO and PSO are capable MPPT
techniques, the Hybrid PSO-SA algorithm leverages the global exploration of SAO and the local exploitation
of PSO to offer superior convergence speed, stability, and power extraction performance under diverse
irradiance scenarios. This makes the hybrid approach highly suitable for real-time MPPT in PV systems,
especially in environments where partial shading is common.
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