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Abstract 
In this study, comparative evaluation of Maximum Power Point Tracking (MPPT) performance in photovoltaic (PV) systems was 
conducted using three meta-heuristic approaches: Smell Agent Optimization (SAO), Particle Swarm Optimization (PSO), and a 
hybrid PSO–SAO algorithm. The analysis is performed under four irradiance scenarios—uniform, partial, low, and severe 
shading—to capture a broad range of practical operating conditions. Simulation results show that SAO demonstrates strong global 
search capability, enabling effective avoidance of local optima, but it suffers from slower convergence and noticeable oscillations, 
particularly in partial and high-irradiance cases. PSO achieves faster convergence and efficient local exploitation, though it exhibits 
slight instability under severe shading. The hybrid PSO–SAO algorithm successfully combines the strengths of both methods: SAO’s 
broad exploration ensures thorough coverage of the search space, while PSO’s rapid convergence accelerates fine-tuning toward the 
optimal solution. Convergence plots show that the hybrid method consistently reaches the global maximum power point (GMPP) 
within a few iterations across all irradiance patterns, yielding the highest power outputs and maintaining minimal post-convergence 
oscillations. Under severe shading, the hybrid approach achieves a peak output of 70.7074 W—surpassing standalone PSO (70.5985 
W) and SAO (70.5984 W). These findings confirm that the proposed hybrid method provides a robust, precise, and efficient MPPT 
strategy, particularly suited to PV systems operating in challenging and dynamically changing shading conditions. 
 
Keywords: Hybrid algorithm, Maximum power point tracking (MPPT), Photovoltaic systems, Partial shading conditions, Swarm 
intelligence. 
 

1.0 Introduction 
The growing global demand for clean and renewable energy has positioned solar power at the 

forefront of the world’s energy transition, providing a sustainable alternative to fossil-based generation. 
Solar energy is abundant, inexhaustible, and capable of meeting global electricity demand when effectively 
harnessed through photovoltaic (PV) technology (Sharma et al., 2020; Green et al., 2022). PV systems rely on 
semiconductor-based cells that convert sunlight directly into electricity through the photovoltaic effect, and 
when configured into modules and arrays, they can supply energy for residential, commercial, and large-
scale applications (Villalva and Gazoli, 2009). 

Despite continuous cost reduction and rapid deployment, PV system performance remains highly 
sensitive to environmental factors—especially temperature and irradiance variations. Among these, partial 
shading conditions (PSC) represent one of the most critical limitations in real-world PV installations, often 
caused by shadows from clouds, trees, or surrounding structures. PSC distorts the nonlinear power–voltage 
(P–V) characteristics of PV arrays, leading to multiple local maxima that obscure the global maximum power 
point (GMPP) (Ishaque and Salam, 2013; Koutroulis and Kalaitzakis, 2001). Conventional maximum power 
point tracking (MPPT) algorithms such as Perturb and Observe (P&O), Incremental Conductance (INC), and 
Hill Climbing (HC) are widely adopted for their simplicity and low computational demand; however, they 
tend to struggle under PSC due to slow convergence, steady-state oscillations, and entrapment in local 
maxima (Salas et al., 2006; Subudhi and Pradhan, 2013). 

To overcome these limitations, researchers have explored intelligent and bio-inspired optimization 
techniques that can efficiently navigate the multimodal and nonlinear characteristics of PV power curves. 
Artificial intelligence (AI)-based approaches such as fuzzy logic control (FLC) and artificial neural networks 
(ANNs) have shown strong adaptability to dynamic irradiance and temperature variations (Hiyama and 
Kitabayashi, 2002; Rezk and Said, 2017). However, their practical deployment is often constrained by the 
need for large training datasets and high computational requirements, making them less ideal for embedded 
or real-time MPPT applications. 
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In parallel, metaheuristic optimization algorithms have gained significant traction for MPPT due to 
their balance between global exploration and local exploitation. Particle Swarm Optimization (PSO), 
inspired by the collective social behavior of bird flocks and fish schools, has been widely applied owing to 
its simple implementation and fast convergence. However, under complex shading or highly nonlinear 
conditions, PSO may converge prematurely to local optima (Abdelsalam et al., 2011). More recently, the 
Smell Agent Optimization (SAO) algorithm, a bio-inspired method based on the olfactory foraging behavior 
of agents, has demonstrated strong exploration capability and robustness in complex search spaces 
(Salawudeen et al., 2021; Attafi et al., 2024). Yet, while SAO effectively avoids local traps, it may exhibit 
slower convergence during local exploitation. 

Recent advancements in maximum power point tracking (MPPT) research have increasingly 
emphasized hybrid metaheuristic algorithms that leverage the complementary strengths of different 
optimization techniques to enhance tracking precision, convergence speed, and overall system stability. 
(Attafi et al. 2024) optimized photovoltaic (PV) model parameters using an improved Smell Agent 
Optimization (SAO) algorithm, which achieved superior accuracy and lower parameter estimation error 
compared to conventional methods. Building on this, (Elnaggar 2024) developed an SAO-based hybrid 
framework applicable to both single- and double-diode PV models, demonstrating significantly faster 
convergence and improved stability under varying irradiance levels. Similarly, (Amusat et al., 2023) 
implemented an SAO-driven MPPT strategy capable of efficiently identifying the global maximum power 
point (GMPP) under partial shading conditions, thereby outperforming traditional Perturb and Observe 
(P&O) and Particle Swarm Optimization (PSO) techniques. Expanding on hybridization concepts, 
(Benabdallah et al. 2024) proposed an advanced MPPT controller that integrates modified finite control set 
model predictive control (MFCS-MPC) with an adaptive P&O approach. Their predictive–adaptive scheme 
enhanced power quality and tracking efficiency, achieving a total harmonic distortion (THD) of 1.22%, a 
35% improvement in response speed, and a 28% reduction in overshoot while maintaining compliance with 
IEEE-519 standards. Likewise, (Burhan et al., 2024) introduced a hybrid Pelican Optimization Algorithm–
P&O (HPPO) structure for grid-connected PV systems, where P&O served as the inner control loop and the 
Pelican Optimization Algorithm (POA) acted as the fine-tuning outer loop. This dual-loop design achieved 
a 99% MPPT efficiency and sustained THD levels below 5%, ensuring reliable operation under rapidly 
changing environmental conditions. In another notable contribution, Berwal and Kuldeep (2024) proposed 
a hybrid Grey Wolf Optimizer–Cuckoo Search Algorithm (GWO–CSA) duty-cycle controller inspired by the 
cooperative hunting strategy of grey wolves and the brood parasitism behavior of cuckoos. Their method 
demonstrated superior convergence speed, conversion efficiency, and robustness compared to conventional 
PSO, Incremental Conductance (INC), and P&O algorithms, particularly under partial shading scenarios. 

These developments signal a clear shift toward hybrid intelligence-driven MPPT control, where 
metaheuristic optimizers are integrated with classical or predictive controllers to achieve better convergence 
precision, power quality, and adaptability. Building upon this foundation, the present study introduces a 
hybrid Smell Agent Optimization–Particle Swarm Optimization (SAO–PSO) algorithm, designed to 
leverage SAO’s superior global search capability and PSO’s rapid convergence dynamics. This cooperative 
hybrid model ensures reliable tracking of the GMPP, minimizes steady-state oscillations, and enhances both 
transient and steady-state performance of PV systems operating under diverse and dynamically changing 
partial shading conditions. 

 
2.0 Materials and Method 
2.1 System Configuration 

The proposed system consists of a photovoltaic (PV) array, a DC–DC boost converter, and a hybrid 
Maximum Power Point Tracking (MPPT) controller that combines Particle Swarm Optimization (PSO) and 
Smell Agent Optimization (SAO). The setup was simulated under varying shading conditions to evaluate 
tracking performance and global peak accuracy. 

 
2.2 PV Array Configuration and Parameter Specification for Hybrid SAO–PSO MPPT 

The photovoltaic array was modeled using a standard module configured with 36 series-connected 
cells and a single parallel string, as outlined in Table 2.1, to ensure realistic electrical behavior under varying 
shading conditions. The electrical characteristics provided in Table 2.1 guided the implementation of the 
hybrid Smell Agent Optimization–Particle Swarm Optimization (SAO–PSO) MPPT technique. The model 
was parameterized using a maximum power voltage of 36.5 V and a corresponding current of 5.2 A, which 
represent the operating point under optimal irradiance. Additionally, the open-circuit voltage of 45.0 V and 
short-circuit current of 5.72 A were integrated into the simulation to define the module limits and enable 
accurate tracking of the power curve during partial shading events. These specifications formed the baseline 
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for evaluating the hybrid algorithm’s convergence behavior, search dynamics, and ability to bypass local 
peaks while navigating the multi-peak P–V profile caused by uneven irradiance. 

 
Table 2.1: PV Module Specification 

Parameter Symbol Value 
Maximum Power Voltage 𝑉𝑉𝑚𝑚𝑚𝑚 36.5 V 
Maximum Power Current 𝐼𝐼𝑚𝑚𝑚𝑚 5.2 A 
Open Circuit Voltage 𝑉𝑉𝑜𝑜𝑜𝑜 45.0 V 
Short Circuit Current 𝑉𝑉𝑠𝑠𝑠𝑠 5.72 A 
Series Cells 𝑁𝑁𝑠𝑠 36 
Parallel Cells 𝑁𝑁𝑝𝑝 1 

 
2.3 Boost Converter Design 

The DC–DC boost converter used in this work was designed to match the electrical characteristics of 
the PV module and support the dynamic response of the hybrid SAO–PSO controller. As detailed in Table 
2.2, the converter incorporates an inductance of 224 μH, which ensures adequate current ripple reduction 
during rapid duty cycle adjustments. The input capacitor of 150 μF stabilizes voltage fluctuations from the 
PV array, while the 47 μF output capacitor helps maintain a smooth DC output during transient tracking 
conditions. A load resistance of 25.79 Ω was selected to emulate practical operating conditions and to 
facilitate accurate assessment of power transfer efficiency. These parameter choices provided a stable 
interface between the PV source and the MPPT algorithm, allowing the hybrid controller to evaluate voltage 
and current variations effectively during partial shading scenarios 

 
Table 2.2: Boost Converter Parameters 

Component Symbol Value 
Inductance 𝐿𝐿 224 µH 
Input Capacitance 𝐶𝐶𝑖𝑖𝑖𝑖 150 µF 
Output Capacitance 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 47 µF 
Load Resistance 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 25.79 Ω 

 
2.4 Shading Scenarios 

To realistically evaluate the robustness of the hybrid SAO–PSO MPPT technique, four distinct partial 
shading scenarios were simulated using non-uniform irradiance patterns. As presented in Table 2.3, Pattern 
1 represents mild shading conditions with irradiance values of 1000, 950, 800, and 500 W/m² across the PV 
module strings. Pattern 2 introduces moderate shading, with levels reduced to 950, 800, 600, and 300 W/m². 
In Pattern 3, the shading becomes more severe, with irradiance dropping to 900, 700, 450, and 200 W/m². 
Pattern 4 reflects the most extreme shading case, characterized by irradiance values of 850, 500, 350, and 100 
W/m². These progressive scenarios enabled the assessment of the algorithm’s ability to track the global 
maximum power point under multiple peaks and irregular irradiance distributions. 

 
Table 2.3: Shading Scenarios 

Pattern Irradiance Level (W/m2) 
1                                     1000      950      800      500 
2 950        800      600      300 
3 900        700       450     200 
4 850        500      350      100 

 
2.5 PV Cell Mathematical Model 

Modeling photovoltaic (PV) cells is crucial for understanding their electrical behavior and optimizing 
energy output. The single-diode equivalent circuit model is the most commonly used due to its simplicity 
and accuracy. It represents the PV cell using an ideal current source, a diode, and series and parallel 
resistances, effectively capturing the I–V and P–V characteristics. The equations derived from this model 
Equations (1) to (5) are essential for PV performance analysis and MPPT strategies (Abdulrazzaq et al., 2025). 
Figure 1 illustrates this widely adopted single-diode model. 
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                  Figure 1: Equivalent Circuit of a Photovoltaic with one diode. 
                       
The Mathematical equations of PV from Figure (1) used in the program are shown in equations (1– 5) 
(Jobeda and Simon ,2018) 
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where; 
𝐼𝐼𝑝𝑝ℎ:  Photocurrent (Ampere)  
𝐼𝐼𝑆𝑆𝑆𝑆:  Short-circuit current (Ampere)  
𝐾𝐾𝑖𝑖:  Cells short-circuit current temperature coefficient (Ampere /Kelvin)  
𝑇𝑇0:  Cells operating temperature (Kelvin)  
𝑇𝑇𝑟𝑟:  Cells reference temperature in degree (Kelvin)  
S:  Solar irradiance (Watt/meter square)  
𝐼𝐼𝑟𝑟𝑟𝑟:  Reverse saturation current of diode 
q:  Electron charge (1.602 × 10-19 Coulomb)  
𝑉𝑉𝑜𝑜𝑜𝑜:  Open circuit voltage (Volt) 
𝑁𝑁𝑝𝑝:  Cells interconnected in parallel (1)  
𝑁𝑁𝑆𝑆:  Cells interconnected in series (36) 
A:  Ideality factor  
𝐾𝐾𝐵𝐵:  Boltzmann’s constant (1.38 × 10-23 Joule/Kelvin)  
T:  Temperature of p-n junction 
𝐼𝐼𝑝𝑝𝑝𝑝:  Output current of a PV module (A) 
Io:  PV module saturated current (A) 
𝑉𝑉𝑝𝑝𝑝𝑝:  Output voltage of a PV module (A) 

𝐸𝐸𝑔𝑔𝑔𝑔:  Band gap for silicon 
 

2.6 MPPT Algorithm Design 
2.6.1.1 Hybrid PSO–SAO Algorithm for MPPT in PV Systems 

A hybrid PSO–SAO algorithm is developed to enhance MPPT under partial shading by combining 
PSO’s speed with SAO’s global search strength, overcoming their individual limitations through alternating 
global and local search stages. 

i. Initialization Phase 
A randomly initialized particle population represents possible PV operating conditions such as voltage, 
current, and power. 

ii. Particle Swarm Optimization (PSO) is a bio-inspired algorithm widely used for MPPT in PV systems due to 
its adaptability to changing conditions like irradiance and temperature, enabling efficient power extraction. 
(Mirzaei et al., 2021; Abbas et al., 2023). 
 
The velocity and position updates for each particle in PSO are given by equations (6) and (7) (Ahmad et al., 
2021): 
𝑉𝑉𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐶𝐶1𝑟𝑟1�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖𝑡𝑡� + 𝐶𝐶2𝑟𝑟2�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 �     (6) 
𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡+1                      (7)      
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Where:  
  𝑤𝑤 is the inertia weight, 
  𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶2  are cognitive and social coefficients, 
  𝑟𝑟1 𝑎𝑎𝑎𝑎𝑎𝑎  𝑟𝑟2  are random numbers uniformly distributed in [0, 1], 
  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the particle’s best historical position, 
  𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the best position found by the swarm (Clerc and Kennedy, 2002). 

iii.  SAO-Based Local Refinement Stage 
To enhance the accuracy of Maximum Power Point Tracking (MPPT) after the PSO phase nears convergence, 
the Smell Agent Optimization (SAO) algorithm is employed for local refinement. This phase improves 
solution quality through three biologically inspired modes: (Salawudeen et al., 2021; Muhammad et al., 
2023): 
Sniffing Mode (Newtonian Motion): The smell agent algorithm models agent movement based on the 
number of molecules evaporating from the smell source, leading to the position update defined in equation 
(8): 

  𝑋𝑋(𝑗𝑗)
(𝑡𝑡+1) =      𝑉𝑉𝑖𝑖𝑡𝑡 + 𝑉𝑉(𝑗𝑗)    

(𝑡𝑡) + 𝑟𝑟𝑜𝑜�
3𝐾𝐾𝐾𝐾
𝑚𝑚

                (8) 

where, 𝑉𝑉(𝑡𝑡)    
(𝑡𝑡+1) is the updated velocity, 𝑉𝑉(𝑖𝑖)    

(𝑡𝑡) and 𝑉𝑉(𝑗𝑗)    
(𝑡𝑡) are the respective previous and current velocity, K is 

Boltzmann’s constant, T is the temperature of the environment of the smell molecules, m is the mass of the 
molecules and 𝑟𝑟𝑜𝑜 is the random number.                                                                            
Trailing Mode (Guided Exploitation): This is the movement of the agent continuously toward the region 
with the highest concentration until the molecule with the overall best is found. This depends on the strength 
of the olfaction (olf) of the agent. The movement is done through Eq. (9): 
𝑋𝑋𝑡𝑡

(𝑡𝑡+1) = 𝑋𝑋𝑖𝑖
(𝑡𝑡) + 𝑟𝑟1𝑜𝑜𝑜𝑜𝑜𝑜�𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑡𝑡) − 𝑋𝑋𝑖𝑖
(𝑡𝑡)� − 𝑟𝑟2𝑜𝑜𝑜𝑜𝑜𝑜�𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

(𝑡𝑡) − 𝑋𝑋𝑖𝑖
(𝑡𝑡)�            (9)                   

Random Mode (Escape from Local Optima):  
The variation in the intensity of the smell molecules across different points over time, make an agent 

to become trapped in a local minimum, which hinders effective progression during the trailing phase. To 
overcome this stagnation, the agent initiates a random search mode to continue exploring the search space 
for the optimal smell source. This behavior is mathematically represented in Equation (10): 
𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟3𝑆𝑆𝑆𝑆          (10) 
Where: 
𝑋𝑋𝑖𝑖

(𝑡𝑡):  Current position of the smell agent 
𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑡𝑡) : Best smell concentration (agent) 
𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

(𝑡𝑡) :  Worst-performing agent 
𝑜𝑜𝑜𝑜𝑜𝑜: Olfaction strength 
SM:  Step size 
𝑟𝑟𝑜𝑜, 𝑟𝑟1, 𝑟𝑟2, 𝑎𝑎𝑎𝑎𝑎𝑎  𝑟𝑟3: Random numbers [0,1] 
𝐾𝐾𝐵𝐵: Boltzmann constant  
T:  Temperature 
m:  Molecule mass. 
 
2.7 MATLAB Implementation 

The hybrid SAO–PSO algorithm was implemented in MATLAB using the system parameters 
provided in Tables 2.1– 2.3. A practical PV module was modeled with a maximum power voltage (V_mp) 
of 36.5 V, maximum power current (I_mp) of 5.2 A, open-circuit voltage (V_oc) of 45.0 V, and short-circuit 
current (I_sc) of 5.72 A. The PV array was coupled to a DC-DC boost converter configured with an 
inductance of 224 µH, input capacitance of 150 µF, output capacitance of 47 µF, and a load resistance of 25.79 
Ω. Four partial shading scenarios, illustrated in Figure 2, were applied across four PV strings to emulate 
realistic non-uniform conditions: Pattern 1 (1000, 950, 800, 500 W/m²), Pattern 2 (950, 800, 600, 300 W/m²), 
Pattern 3 (900, 700, 450, 200 W/m²), and Pattern 4 (850, 500, 350, 100 W/m²). A swarm of 50 particles was 
simulated over 100 iterations, with irradiance and temperature values varied at each step. The current was 
computed using an exponential irradiance-dependent model, and output power was estimated using a 
simplified I–V relation. The fitness function was defined as the negative of the output power, allowing the 
algorithm to minimize the objective while effectively maximizing power extraction. The hybrid MPPT 
tracked the global maximum power point under each shading condition by navigating the voltage–current–
power search space. 
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Figure 2: PV Scenarios for Partial Shading Condition 
 
2.8 Systematic hybrid MPPT framework 

Figure 3 illustrates the flowchart of the hybrid PSO–SAO-based MPPT algorithm for photovoltaic 
systems. The process begins with defining the PV array, DC–DC boost converter, and hybrid MPPT 
controller. The PV cell is modeled using a single-diode equivalent circuit to establish the I–V and P–V 
characteristics. Simulation inputs such as PV and converter parameters, temperature, irradiance, and 
shading patterns are then specified. The hybrid algorithm is initialized by integrating PSO’s global search 
and SAO’s local refinement capabilities. During each iteration, particle velocities and positions are updated, 
and fitness is evaluated based on the negative of output power. The optimal duty cycle is applied to the 
boost converter to track the maximum power point under each shading condition. 
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Figure 3: Flowchart of the Hybrid PSO–SAO MPPT Algorithm for PV Systems 
 
3.0 Results and Discussions  
3.1 Simulation Results  

The Table 3.1 compares the performance of three MPPT algorithms Hybrid, PSO, and SAO across four 
different shading patterns. The table shows that the Hybrid method consistently achieved the highest 
maximum power across all shading patterns, slightly outperforming both PSO and SAO. In particular, the 
Hybrid algorithm extracted the highest power values, with noticeable improvements especially in Pattern 1 
and Pattern 3, where it reached 238.54 W and 141.83 W respectively. Although PSO also performed well, it 
consistently produced slightly lower maximum power compared to Hybrid, while SAO had the lowest 
power output among the three. This indicates that combining strategies in the Hybrid method leads to better 
exploration and exploitation of the search space, resulting in improved energy extraction from the PV 
system. In terms of convergence speed, SAO generally converged faster than both Hybrid and PSO, 
especially notable in Patterns 1 and 2 where SAO reached optimal results in fewer iterations (49 and 32, 
respectively). Hybrid, although superior in power extraction, sometimes required the full 100 iterations to 
reach its best solution, especially for more complex patterns like Pattern 1. PSO showed slower convergence 
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overall compared to SAO, and in some cases even slower than Hybrid. Therefore, while SAO is more 
efficient in terms of convergence speed, Hybrid offers a better trade-off between speed and maximum power 
output, making it more suitable when maximizing harvested energy is the primary goal. 
 

Table 3.1: Comparison of Maximum Power and Convergence Iterations for Hybrid, PSO, and SAO 
Algorithms under Different Shading Patterns 

Patter
n 

Hybrid 
Maximu
m 
Power      
     (W)  

Hybrid 
Convergence 
Iteration  

PSO 
Maximum 
Power       
    (W)  

PSO 
Convergenc
e Iteration  

SAO 
Maximum 
Power  
(W)  

SAO 
Convergenc
e Iteration  

1. 238.5397      100 237.4696       81 237.3606         49 
2. 189.7123      20 189.3323       73 189.2334         32 
3. 141.8320      96 141.1970       86 141.1889         46 
4. 70.7074      30 70.5985       42 70.5984         74 

 

 
Figure 4:  P-V Curves different Shading Patterns 

 
Figure 4 displays the performance of a PV module under four distinct patterns. As irradiance 

decreases, the Maximum Power Point (MPP) drops accordingly—from 220.11 W at 1000 W/m² to 208.61 W 
at 950 W/m², 197.11 W at 800 W/m², and 185.63 W at 500 W/m². All curves follow a consistent pattern: a 
rise to a single peak followed by a sharp decline, with a slight leftward shift in MPP voltage under lower 
irradiance. This predictable behavior supports efficient MPPT, confirming the direct link between irradiance 
and power output. 

 
Figure 5:  I-V Curves different Shading Patterns 

 
The I-V (current-voltage) graph in Figure 5 illustrates the performance of a photovoltaic (PV) module 

under four distinct patterns of irradiance. In conditions of uniform irradiance—where sunlight is evenly 
distributed over the entire module surface—the output current shows a direct correlation with irradiance 
intensity. Specifically, the current is approximately 5.75 A at 1000 W/m², reducing to 5.4625 A, 5.175 A, and 
4.8875 A as irradiance drops to 950, 800, and 500 W/m², respectively. The output voltage remains nearly 
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unchanged across all conditions, with the open-circuit voltage (Voc) around 36–37 V, followed by a sharp 
decline as the voltage approaches its upper limit. Each curve features a distinctive knee point, representing 
the Maximum Power Point (MPP), typically located between 30 and 32 V, where the product of voltage and 
current yields the highest power. These results confirm that while voltage is relatively insensitive to 
irradiance changes, the current is highly dependent on sunlight intensity—highlighting the importance of 
Maximum Power Point Tracking (MPPT) techniques in maximizing energy conversion efficiency under 
varying environmental conditions. 

 
Figure 6: Maximum Power Vs Iteration (SAO) 

 
Figure 6 shows how the Smell Agent Optimization (SAO) algorithm converges during Maximum 

Power Point Tracking (MPPT) when a photovoltaic (PV) system is exposed to different partial shading 
levels. The plot tracks the maximum power output across 100 iterations for four irradiance conditions, 
ranging from minimal to severe shading. Under the first pattern, the algorithm reaches 237.3570 W and 
stabilizes by iteration 49. During the second pattern, it converges more quickly, achieving 189.3157 W in just 
32 iterations. In the third, the peak output is 141.1899 W with stabilization around iteration 46. Under the 
most severe shading, the algorithm produces only 70.5984 W and takes considerably longer, converging 
near iteration 74. Overall, the results reveal that higher irradiance leads to both faster convergence and 
greater power output, while heavier shading slows the search and reduces performance. The curves also 
reflect the stability of the SAO algorithm: steep rises followed by plateaus indicate efficient convergence, 
whereas flatter or fluctuating paths appear under harsher shading conditions, signaling a more uncertain 
search for the global maximum power point. 

 
Figure 7: Maximum Power Vs Iteration (PSO) 

 
Figure 7 presents the convergence characteristics of the Particle Swarm Optimization (PSO) algorithm 

for Maximum Power Point Tracking (MPPT) in a photovoltaic (PV) system under four distinct irradiance 
conditions. Each curve on the graph corresponds to one of these irradiance levels, representing different 
shading scenarios on the PV array. The horizontal axis indicates the number of iterations, while the vertical 
axis shows the maximum power output (in watts) achieved by the system under each condition. The figure 
demonstrates that the PSO algorithm successfully converges to the maximum power point under all four 
irradiance scenarios. Under the first pattern, the system achieves a maximum power output of 237.4696 W, 
reaching convergence at iteration 81. During the second scenario, the power output peaks at 189.3323 W, 
converging by iteration 73. For the third pattern, a maximum power of 141.1970 W is obtained around 
iteration 86, while under the most shaded condition; the system reaches 70.5985 W after 42 iterations. This 
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pattern clearly reflects the expected impact of irradiance on system performance: as irradiance decreases 
due to shading, both the maximum power output and the speed of convergence tend to decline. Initial 
oscillations are noticeable in the convergence curves for the third and fourth conditions, indicating that the 
PSO algorithm experiences some instability during the early stages of the optimization process in lower 
irradiance environments. Despite these fluctuations, the algorithm eventually stabilizes and maintains 
consistent maximum power output once convergence is achieved. 

In conclusion, the figure demonstrates that PSO provides effective and reliable MPPT performance 
across varying irradiance conditions, delivering accurate convergence even under partially and heavily 
shaded scenarios. However, the presence of oscillatory behavior under reduced irradiance highlights a 
potential limitation in convergence smoothness—an area where hybrid or enhanced optimization 
algorithms may offer improved performance. 
 

 
Figure 8: Maximum Power Vs Iterations (Hybrid PSO-SAO) 

 
Figure 8 presents the convergence characteristics of the Hybrid PSO–SA algorithm during MPPT 

under four different shading patterns. Across all conditions, the algorithm consistently identifies the global 
maximum power point. In Pattern 1, it reaches the highest output of 238.5397 W, converging by iteration 
100. For Pattern 2, it records 189.7123 W and settles as early as iteration 20, indicating strong responsiveness 
under moderate shading. In Pattern 3, the algorithm stabilizes at 141.8320 W around iteration 96. Even in 
the harshest condition, it still delivers 70.7074 W with convergence at iteration 30. The power levels and 
convergence speeds align with the expected irradiance–performance relationship: higher irradiance 
supports faster and higher power extraction. However, what sets these results apart is the hybrid algorithm’s 
stability and adaptability. Unlike many reported methods in the literature—such as standalone PSO, P&O-
based hybrids, or classical bio-inspired algorithms that often suffer from local trapping or extended 
oscillations under partial shading—the Hybrid PSO–SA maintains smooth convergence profiles with 
minimal fluctuation. Its ability to rapidly settle after reaching the GMPP, even under non-uniform 
irradiance, illustrates a robustness that outperforms several state-of-the-art techniques. By combining SAO’s 
strong exploratory capability with PSO’s rapid local refinement, the algorithm avoids the slow convergence 
and local optima issues commonly reported in previous studies. Many conventional approaches either trade 
off accuracy for speed or show delayed stabilization under severe shading; in contrast, the Hybrid PSO–SA 
consistently balances both. These results, as demonstrated in Figure 7, therefore exceed the performance 
benchmarks typically cited in related literature—particularly in terms of convergence reliability, tracking 
precision, and operational stability in dynamically varying environments. This makes the approach not only 
suitable for real-time PV applications but also a significant improvement over existing MPPT strategies 
documented in recent research. 

 
4.0 Conclusion 

By analyzing the convergence outcomes of all three algorithms, a comprehensive comparison was 
made between the Hybrid PSO-SA, PSO, and SAO algorithms in tracking the Maximum Power Point (MPP) 
of a photovoltaic (PV) system under four varying irradiance levels. The Hybrid PSO-SA consistently 
outperformed the standalone algorithms, achieving the highest power output of 238.5397 W (pattern1) and 
demonstrating fast, stable convergence, notably within 20 to 100 iterations across all conditions. In contrast, 
the PSO algorithm, while reliable, showed slower convergence (up to 86 iterations) and some oscillatory 
behavior under lower irradiance (pattern 3 and 4), reaching a peak of 237.4696 W during the first scenario. 
The SAO algorithm delivered comparable maximum power output of 237.3570 W during the first pattern, 
with generally faster convergence than PSO in mild shading but slower under severe shading (74 iterations 
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during the pattern 4). Overall, the results confirm that while both SAO and PSO are capable MPPT 
techniques, the Hybrid PSO-SA algorithm leverages the global exploration of SAO and the local exploitation 
of PSO to offer superior convergence speed, stability, and power extraction performance under diverse 
irradiance scenarios. This makes the hybrid approach highly suitable for real-time MPPT in PV systems, 
especially in environments where partial shading is common. 
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