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Abstract 
Lightning-induced disturbances are a major cause of power outages and equipment failures in medium-voltage 
distribution networks, particularly across tropical regions such as Abuja, Nigeria. This study presents a neural 
network–based early lightning prediction framework for Abuja, Nigeria, integrating advanced deep learning 
techniques with power system simulation to support proactive grid management. Using hourly meteorological data 
from 2013 to 2023 obtained from the Nigerian Meteorological Agency (NiMet), a seven-phase methodology was 
employed, including data preprocessing, feature engineering, and exploratory data analysis to address class imbalance, 
missing values, and temporal dependencies. Key features included lag variables, rolling aggregates, and cyclic temporal 
encoding to capture diurnal and seasonal patterns. Long Short-Term Memory (LSTM) and Convolutional Neural 
Network (CNN) models were optimized through hyperparameter tuning and evaluated using precision, recall, F1-
score, and forecast skill metrics. The LSTM achieved 91% accuracy and 83% recall, outperforming the CNN. 
Predictions were integrated into a MATLAB-based distribution network simulation, where adaptive relay settings 
and preemptive sectionalizing reduced breaker operations and outage durations. Reliability indices, including SAIDI 
and SAIFI, improved compared to conventional reactive methods. Findings highlight LSTM-driven lightning 
forecasting as a scalable solution for enhancing power distribution network resilience through predictive analytics and 
automated operational strategies. 
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1.0 Introduction 
  Lightning remains one of the most disruptive natural phenomena affecting power distribution 
networks (Li, et al., 2024) (Souto et al., 2023) (Paulino, et al., 2021), particularly during convective weather 
seasons. Statistics indicate that lightning-related trips account for 40 %–70 % of power line failures, imposing 
substantial risks to grid stability and reliability. Traditional mitigation strategies—such as surge arresters, 
shielding systems, and reactive reclosers—serve mainly as post-event defenses and lack predictive capacity. 
Consequently, networks often endure unnecessary breaker operations and prolonged recovery times. Recent 
strides in machine learning, particularly with Long Short-Term Memory (LSTM) networks, offer compelling 
improvements in temporal forecasting of complex hydrometeorological events. Notably, LSTM-based models 
have demonstrated superior performance over traditional process-driven models in rainfall–runoff 
forecasting, (Kratzert et al., 2018) (Lees, et al., 2021) effectively learning long-term dependencies from input 
sequences.  

These results underscore the potential of deep-learning architectures to anticipate highly dynamic 
and nonlinear phenomena—such as cumulative lightning activity—by leveraging historical meteorological 
patterns. Embedding predictive analytics into power distribution system operations provides an opportunity 
to shift from reactive to proactive resilience strategies (Jacobs et al., 2024) (Ghasemkhani, et al., 2024). 
Probabilistic frameworks for assessing lightning strike impacts have been developed, incorporating weather-
based lightning activity and component failure probabilities to model the risk of system failures over time. By 
integrating LSTM-driven lightning forecasts with adaptive control mechanisms—such as dynamic relay 
adjustment and network sectionalizing—distribution networks can mitigate service interruptions, reduce 
outage duration, and enhance key reliability metrics like SAIDI and SAIFI (Ahmad & Asar, 2021). 

 
2.0 Methodology 

This study adopted a structured analytical and computational methodology comprising four main 
stages: data acquisition, preprocessing, model development, and performance evaluation. Historical lightning 
occurrence data and associated meteorological parameters were collected from accredited sources and aligned 
with operational datasets extracted from the simulated distribution network in ETAP. All datasets were 
cleaned, normalized, and temporally synchronized using MATLAB and Python to eliminate noise and 
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enhance modelling accuracy. A neural-network-based predictive model, implemented in Python using 
supervised learning techniques, was trained on multi-year historical patterns and validated with independent 
test sets to avoid overfitting. The resulting lightning strike forecasts were subsequently imported into ETAP, 
where network behaviour was simulated under predicted disturbance conditions to evaluate the response of 
key components. Performance metrics—including forecast accuracy, reliability indices, and resilience 
enhancement factors—were computed within MATLAB and Python to quantify the effectiveness of the 
proposed approach. This integrated ETAP–MATLAB–Python methodology ensures analytical rigour, 
reproducibility, and alignment with established standards in power system resilience analysis. 

 
2.1 Materials and Study Area 

This study developed a neural network–based early lightning prediction and mitigation framework 
for distribution network resilience enhancement. The methodology was designed in two primary phases: (1) 
Lightning Forecasting Model Development and (2) Integration with Power System Simulation. Figure 1 
presents the overall workflow. The study area chosen is Lugbe in Abuja, Lugbe experiences moderate to 
intense thunderstorm activity during the rainy season. A good percentage of the customers are connected 
directly to the H21 feeder at 33KV, Lugbe also incorporates a 2 X 15MVA 33/11KV substation. The 11kV radial 
feeder (feeders 2, 5 and 22) in this area supplies over 2000 customers and includes more than 50 distribution 
transformers. The network is vulnerable to atmospheric discharges, necessitating a resilience-focused study. 
The utility relies on manual isolation of the network on the threat of thunderstorm.  

 
2.2 Data Acquisition, Preprocessing and Feature Engineering 

The raw dataset provided by the Nigerian Meteorological Agency comprised 96,408 rows with 5 
columns (YEAR, MONTH, DAY, HOUR, LIGHTNING_STRIKE), capturing hourly lightning-strike 
occurrences in Abuja from 2013 to 2023. This extensive multi-year dataset offered a rich temporal structure 
essential for training deep learning models, particularly those designed to learn long-term dependencies and 
seasonal patterns. To enhance the predictive capability of the LSTM and CNN models, comprehensive 
preprocessing and feature-engineering procedures were implemented. These procedures included handling 
missing values, detecting and correcting temporal inconsistencies, normalizing nonlinear lightning-strike 
magnitudes, and generating additional time-based features such as hour-of-day, day-of-year, and monthly 
seasonal indices. The dataset was also resampled to ensure uniform hourly continuity, and outlier spikes—
often caused by sensor noise or atmospheric interference—were smoothed using rolling-window techniques 
to improve model robustness. Furthermore, the final feature matrix was transformed into supervised learning 
sequences tailored for deep learning architectures, with sliding-window frames capturing both short-term 
and long-term temporal dynamics. Figure 2 below shows the algorithm for the research data preprocessing 
and feature engineering, outlining each transformation step from raw hourly observations to structured, 
model-ready inputs. 

 
Figure 1: An Algorithm showing data processing stages 
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2.3 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) was conducted to uncover patterns, trends, and underlying 
relationships within the lightning-strike dataset for Abuja, Nigeria. This analytical phase played a crucial role 
in identifying the temporal behaviours and variability of lightning occurrences across different seasons, years, 
and hours of the day. Various statistical summaries, distribution plots, and time-series visualisations were 
employed to assess the frequency and intensity of lightning events, detect anomalies, and highlight potential 
outliers that could influence model performance. In addition, correlation analysis and trend decomposition 
techniques were applied to reveal periodic structures linked to meteorological cycles such as the West African 
Monsoon. Insights obtained from the EDA informed subsequent modelling decisions, including feature-
engineering strategies, selection of model hyperparameters, and the choice of appropriate data-normalisation 
approaches. Overall, this phase provided a comprehensive contextual understanding of the meteorological 
phenomena being studied and ensured that the predictive models were developed on a well-characterised 
and statistically consistent dataset. The lines of code used for performing the EDA are shown below. 

 
2.4 Distribution of Lightning Strike Occurrences 

The initial analysis examined the binary distribution of lightning strike occurrences within the 
compiled dataset. Findings revealed a notable and persistent imbalance, where non-occurrence instances 
accounted for 76.8% of the total observations, substantially outweighing the 23.2% representing actual 
lightning strike events. This uneven distribution underscores the skewed nature of the dataset and highlights 
the challenges associated with modelling rare but operationally critical events such as lightning strikes. Such 
an imbalance required deliberate methodological attention during model development to avoid inherent 
algorithmic bias toward the majority class. Consequently, the modelling process incorporated strategies such 
as class-weight adjustments, the selection of robust evaluation metrics capable of capturing minority-class 
performance, and diagnostic checks to ensure that the predictive model maintained sensitivity to low-
frequency lightning events despite the dominance of negative observations. 

 
2.5 Temporal Analysis of Lightning Strike Occurrences  

A comprehensive time series analysis revealed distinctive and interpretable patterns in lightning 
strike activity across multiple temporal scales. The investigation uncovered clear short-term fluctuations, 
medium-term seasonal cycles, and long-term structural behaviours that collectively define the dynamics of 
lightning occurrence in the study area. The longitudinal examination of thunderstorm occurrences from 2013 
to 2023 demonstrated not only pronounced annual cyclicity but also noticeable inter-annual variability driven 
by broader atmospheric conditions. Peaks in activity were consistently aligned with the wet season months, 
reflecting the influence of convective intensity and moisture availability, while troughs corresponded to the 
dry-season period characterized by reduced atmospheric instability. Notable periods of heightened lightning 
activity were observed during 2016-2017 and 2021-2022, suggesting the potential influence of broader 
climatological factors such as the El Niño-Southern Oscillation or the West African Monsoon dynamics (Cai 
et al., 2025) (Boateng et al., 2024) (Ngueto et al., 2026). 

 
2.6 Seasonal Decomposition Analysis 

Time series decomposition was performed to isolate the trend, seasonal, and residual components of 
the lightning strike data. The multiplicative decomposition model was applied and expressed mathematically 
(Sorhabbeig et al., 2023) in eqn. 1: 

 
𝑌𝑌(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 ) × S(𝑡𝑡) × R(𝑡𝑡) (1) 

 
where Y(t) represents the original time series in strikes/hour, T(t) the trend component in strikes/hour, S(t) 
the seasonal component is a dimensionless multiplicative factor, and R(t) the residual component is also a 
dimensionless multiplicative factor. The decomposition analysis confirmed strong seasonal patterns with an 
annual periodicity. The trend component revealed multi-year cycles potentially linked to broader 
climatological phenomena. The residual component analysis indicated predominantly stochastic variability, 
though with occasional clustering of anomalous values suggesting the influence of extreme weather events or 
mesoscale meteorological systems. 
 
2.7 Long Short-Term Memory Model Development 

The modelling framework was designed to capture the complex temporal dependencies inherent in 
atmospheric and meteorological variables associated with thunderstorm formation. To achieve this, the study 
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followed a structured pipeline that encompassed several critical stages, beginning with systematic data 
preprocessing and splitting to ensure robust separation of training, validation, and testing subsets. This was 
followed by the formulation of an optimized LSTM model architecture tailored to learn long-range sequential 
patterns while mitigating issues such as vanishing gradients. The training phase incorporated iterative 
backpropagation through time, coupled with the use of advanced optimization algorithms to enhance 
convergence stability. Comprehensive model evaluation was then conducted using performance metrics 
suitable for imbalanced time-series classification. Hyperparameter tuning—including adjustments to the 
number of LSTM layers, hidden units, dropout rates, batch size, and learning rate—was executed to maximize 
predictive accuracy and generalization capability. Finally, the fully optimized model was deployed for 
operational inference, enabling reliable, data-driven forecasting of lightning strike events for enhanced 
distribution network resilience. 

 
2.7.1 LSTM Architecture  

The implemented LSTM architecture incorporates three stacked LSTM layers with progressively decreasing 
units (256, 128, and 64), facilitating hierarchical feature extraction from the temporal data. Each LSTM layer 
processes sequences of engineered features extracted from the meteorological dataset, learning increasingly 
abstract representations of lightning strike patterns at different temporal scales. Several programming steps 
were performed using Python programming Language. The model culminates with two fully connected 
layers: a hidden layer with 32 neurons and ReLU activation, followed by an output layer with sigmoid 
activation for binary classification of lightning strike occurrences. Hyperparameter tuning was conducted 
through a systematic grid search process to identify optimal configuration parameters. Performance 
evaluation during hyperparameter tuning utilised precision as the primary metric, with model iterations 
continuing until achieving the target precision threshold of 95% or completion of the predefined 
hyperparameter search space. 

 
2.7.2 LSTM Model Training and Evaluation Protocol 

The model training procedure implemented an early stopping mechanism with a patience level of 10 
epochs, continuously monitoring the validation loss to effectively prevent overfitting and ensure optimal 
generalization performance. To further enhance learning reliability, class weights were incorporated during 
training to mitigate the inherent class imbalance present in lightning strike occurrence data. The resulting 
model architecture, containing a total of 546,369 parameters—of which 545,473 are trainable—reflects a 
carefully calibrated compromise between representational complexity and computational efficiency. This 
design ensures that the network remains expressive enough to capture the temporal dynamics of the dataset 
without incurring unnecessary computational overhead. The final output layer generates probabilistic 
estimates of lightning strike occurrences, which are subsequently subjected to a decision threshold to convert 
these probabilities into binary predictive classes for operational interpretation. 

 
2.8 Convolutional Neural Network Model Development 

Convolutional Neural Networks were selected as an alternative predictive architecture due to their 
established efficacy in pattern recognition and their ability to automatically extract hierarchical features from 
sequential data. While traditionally applied to image processing tasks, CNNs have demonstrated significant 
potential in time series forecasting applications through their capacity to detect local patterns and temporal 
dependencies across different scales. The model training procedure implemented an early stopping 
mechanism with patience set to 10 epochs, monitoring validation loss to prevent overfitting. Class weights 
were applied during training to address the inherent class imbalance in lightning strike occurrences. The final 
CNN model architecture comprises 35,553 total parameters (of which 35,361 are trainable), representing a 
significantly more parameter-efficient architecture compared to the LSTM model. This computational 
efficiency facilitates rapid training and deployment whilst maintaining predictive performance. 

 
2.9 Resilience Enhancement Simulation 

This provides a quantitative framework for assessing how distribution networks respond to 
disturbances and how targeted interventions improve their ability to withstand, absorb, and recover from 
extreme events such as lightning strikes, switching surges, or equipment failures. As highlighted by (Panteli 
& Mancarella, 2015), simulation-based resilience assessment enables utilities to evaluate the dynamic behavior 
of feeders, transformers, auto-reclosers, and protective devices under varying fault scenarios and to identify 
system vulnerabilities before real-world failures occur. By integrating predictive models—such as neural-
network-based lightning forecasting—with power-system simulation environments, engineers can optimize 
system hardening strategies and compare baseline performance with resilience-enhanced configurations 
using reliability indices such as SAIFI, SAIDI, and CAIDI. Ultimately, resilience enhancement simulation 
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bridges real-world operational data with advanced computational modeling, offering a robust decision-
support mechanism for designing more secure and adaptive distribution infrastructures. 

 
2.9.1 Lugbe Area Distribution Network 

The GIS mapping of the Lugbe area distribution network was obtained from the Abuja Electricity 
Distribution Company (AEDC), providing a detailed spatial representation of the network’s structural and 
operational layout. The mapped infrastructure highlights an incoming 33 kV line sourced from the Apo H21 
feeder, which serves as the primary supply route to the community. Within the network topology, a portion 
of consumers is directly connected to the 33 kV feeder through dedicated distribution substations, typically 
supporting large-load or strategically located customers. The remaining consumers receive supply from the 
secondary side of the 2 × 15 MVA Lugbe Injection Substation, which steps down the voltage to 11 kV for 
further distribution through numerous 11/0.415 kV distribution transformers distributed across the area. This 
configuration reflects a hybrid supply structure that integrates both direct high-voltage connections and 
stepped-down secondary distribution, providing an accurate foundation for subsequent network modelling, 
reliability assessment, and resilience analysis. 

 
2.9.2 Modeling of the Distribution Network in ETAP 

The Lugbe distribution network was comprehensively modelled in ETAP, incorporating a significant 
portion of the actual field network as obtained from the GIS data and AEDC operational records. The 
developed model, illustrated in Figure 2 captures the primary feeders, distribution transformers, busbars, and 
major load points necessary for accurate simulation. A load flow analysis was subsequently conducted to 
evaluate the steady-state performance of the system under normal operating conditions. This analysis 
provided detailed insights into bus voltage profiles, line loading conditions, and current flow patterns 
throughout the network. The resulting voltage and current distributions provided a clear representation of 
the overall network performance, revealing how power flows through the various feeders, buses, and 
distribution lines. These results helped identify sections of the network that may be prone to undervoltage 
conditions, potential overloads, or other operational constraints, thereby offering valuable insights for 
evaluating network reliability and guiding future reinforcement or optimization efforts 

 

 
Figure 2: An ETAP network model of Lugbe (Abuja) distribution topology 

 
2.9.3 Implementation of Lightning Prediction in MATLAB/Simulink  

The Lugbe combined 33 kV and 11 kV radial feeder network was exported as a simplified netlist and 
subsequently adapted into MATLAB/Simulink using the Simscape Electrical environment to enable detailed 
dynamic simulation. Within MATLAB, the lightning event dataset derived from the CSV file was seamlessly 
integrated into the model to simulate the real-time behaviour of intelligent protection schemes and to drive 
automated outage initiation scenarios. The CSV dataset provides hourly lightning risk indices on a normalized 
scale from 0 (indicating no detectable risk) to 1 (indicating extremely high risk). For the purpose of simulation, 
a threshold value of 0.6 was established as the trigger point for fault initiation. Whenever the lightning risk 
index exceeded this threshold, the network model automatically generated a fault event at the corresponding 



Jimoh et al. (2025)               Volume 3, Issue 1: 58-70 

Received: 25-10-2025 / Accepted: 28-11-2025 / Published: 24-12-2025  63 
https://doi.org/10.70118/ujet.2025.0301.07 

time step. Embedded control logic was used to replicate preemptive feeder disconnection strategies, designed 
to isolate vulnerable sections of the network and prevent more severe faults from occurring. This modelling 
approach enabled a realistic assessment of protection response under varying lightning risk conditions 

 
Figure 3: A block diagram showing network resilience simulation in MATLAB 

 
2.9.4 Integration of Lightning Prediction into Simulated Model for Resilience Improvement 

To accommodate the imported ETAP network model, the MATLAB control script interacts with a structured 
Simulink model where recloser elements are tagged based on their ETAP identifiers. The script adjusts relay 
logic based on the imported lightning event data; the simulation was done for two scenarios as follows: 

⮚ baseline without lightning prediction, where faults occur according to historical lightning statistics, 
and   

⮚ prediction-enabled, where preemptive control actions such as feeder disconnection and relay setting 
adjustments are applied during high-risk periods to mitigate fault impact. 

Relay TCC curves were dynamically adjusted in the ETAP model to reduce fault clearing times during 
predicted lightning events. Time Multiplier Settings (TMS) and pickup currents were optimized to accelerate 
relay response, minimizing outage duration while maintaining coordination margins to prevent mis-tripping. 
Protective relays usually have an inverse-time characteristic, meaning they function more quickly when fault 
currents are higher. This indicates that when the fault current magnitude rises, the relay travel time falls. By 
isolating only the faulty sections, the TCC curve guarantees synchronization between upstream and 
downstream protection devices, eliminating needless outages. A common mathematical model for the relay 
operating time t as a function of fault current If and relay pickup current Ip is given by the IEC standard 
inverse-time characteristic: (Munkhbaatar et al., 2024) 

 

𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇  ×   
𝐾𝐾

�
𝐼𝐼𝑓𝑓
𝐼𝐼𝑝𝑝
�
𝛼𝛼
− 1

        (2)                                        

where: 
● t = relay operating time (seconds) 
● TMS = Time Multiplier Setting (dimensionless), scales the curve 
● 𝐼𝐼𝑓𝑓 = fault current magnitude (Amperes) 
● 𝐼𝐼𝑝𝑝 = relay pickup current (Amperes) 
● K = time scaling constant 
●  α = inverse time exponent  
● K and α are curve constants depending on relay type (e.g., IEC Standard 

Inverse: K=0.14, α=0.02) 
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Figure 4: IEC Table 60255-151 showing different values for curve constants k and α 

 
To demonstrate the effect of dynamically altering the time current characteristics on the tripping curve of 

relays and operation of the associated auto-reclosers, a mathematical example was adduced as follows: 
Assuming: 
● Ip =100A 
● If =500A (fault current) 
● TMS =1.0 (normal), reduced to 0.6 during high lightning risk 
● K =0.14, α =0.02 (obtained from figure 4) for inverse operation 

We calculate relay operating time using the baseline scenario as well as the adaptive scenario based on 
available lightning strike prediction 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐼𝐼𝑓𝑓
𝐼𝐼𝑝𝑝

=  
500
100

= 5 

Where: 
PSM = plug setting multiplier 

(4) 

  Under normal operation: 
 

 
High lightning risk (adaptive): 

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0.6 ×  0.14
50.02−1

 ≈ 0.0419 secs  
 
The relay trips significantly faster during high-risk periods, reducing outage time. 
 
2.10 Resilience Indices 

To validly check for the improvement of the distribution network in relation to the integration of lightning 
strike prediction data, simulated dynamic trip time setting as well as dynamic auto-recloser operations; 
MATLAB scripts were implemented to include three resilience metrics as follows: SAIFI, SAIDI and CAIDI  
Where: 

SAIFI = System Average Interruption Frequency Index, it indicates the average number of times a 
customer experiences a power outage within a specific period, usually a year, the mathematical expression 
adapted from (Tellez et al., 2023) is given below equation (4):  

SAIFI = ∑
𝑛𝑛
𝑖𝑖=1 𝜆𝜆𝑖𝑖𝑁𝑁𝑖𝑖

𝑁𝑁𝑡𝑡
 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
            (4) 

  
where 𝜆𝜆𝑖𝑖 is the failure rate, Ni is the number of users per location, and Nt is the total number of users served. 
SAIFI is measured in average outage units per customer over a year for a given study system. 

 
                                            𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1.0 ×  0.14

50.02−1
 ≈ 0.0698 secs  
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SAIDI: System Average Interruption Duration Index, it indicates how long, on average, a customer is 
without power due to outages, the mathematical expression adapted from (Tellez et al., 2023) is given 
below equation (6):  

SAIDI = ∑
𝑛𝑛
𝑖𝑖=1 𝑈𝑈𝑖𝑖𝑁𝑁𝑖𝑖

𝑁𝑁𝑡𝑡
     =   𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜  𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

 

              (6) 

SAIDI is measured in time units, often hours. It is usually measured over the course of a year. Where Ni is the 
number of clients in location i, Ui is the yearly interruption time for location i, and Nt is the total number of 
users served. 

CAIDI: Customer Average Interruption Duration Index, it indicates how quickly a utility can resolve 
power outages. 

CAIDI = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

           (7) 
The generated values for a baseline network without the benefit of a lightning prediction input and a 

simulated network model with the benefit of a lightning prediction input were compared and used for 
analysis on the relevance of lightning prediction. 

 
3.0 Results and Discussion 

The results show that the Long Short-Term Memory (LSTM) model adopted in this study provides 
superior performance in forecasting lightning strike occurrences across the Lugbe distribution network. Using 
NiMet’s 2013–2023 hourly atmospheric electricity dataset, the LSTM consistently captured the temporal 
dependencies and nonlinear patterns associated with lightning-favorable conditions, achieving the lowest 
forecasting error among all evaluated models. Comparative analysis with a benchmark CNN architecture 
confirmed the LSTM’s advantage, as the CNN underperformed in long-sequence temporal learning and 
exhibited higher error variability. When integrated into the ETAP-simulated distribution network, the LSTM’s 
early warning forecasts enabled timely switching, improved coordination of protection devices, and pre-
emptive operational adjustments. These actions collectively reduced lightning-induced fault impacts and 
resulted in observable improvements in resilience indicators such as SAIFI, SAIDI, and CAIDI. Overall, 
findings confirm that the LSTM-based prediction framework significantly enhances early lightning detection 
and strengthens the reliability of Abuja’s distribution infrastructure. 

 
3.1 Materials 

The exploratory data analysis (EDA) was carried out on the data obtained from Nimet spanning from 
2013 to 2023 for Abuja, Nigeria. Figure 5 shows the distribution of lightning occurrences in the dataset. From 
the plot in Figure 5, it is evident that for the period of analysis (2013 to 2023), only 1,214 lightning occurrences 
were recorded, whilst 95,194 time periods had no lightning events. This reveals a substantial imbalance in the 
dataset, with lightning events representing merely 1.26% of the total observations. This imbalance was 
carefully considered during the development of both the LSTM and CNN models to ensure proper training 
and forecasting outcomes. 

 

 
Figure 5: A chart showing lightning Count as a low occurrence event 

 
3.2 Time-Series Decomposition 

The time series decomposition in Figure 6 separates the lightning data into four components: original 
data (blue), trend (green), seasonality (orange), and residuals (red). The original data in the top panel shows 
the binary nature of lightning occurrences across the entire study period from 2013 to 2024. The trend 
component reveals cyclical patterns over multi-year periods, with peaks occurring approximately every 2-3 
years. This suggests longer-term climate influences on lightning activity in Abuja. The seasonality component 
confirms the consistent annual pattern identified in the monthly analysis, with regular oscillations that remain 
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stable throughout the dataset. The residual component represents the random variation that cannot be 
explained by trend or seasonality. The consistency of these patterns throughout the dataset provided a solid 
foundation for the forecasting capabilities of both LSTM and CNN models, as they learnt from these temporal 
dependencies to predict future lightning occurrences. 

 

 
Figure 6: A chart showing lightning seasonal trend 

 
3.3 LSTM Model Performance Evaluation 

The Long Short-Term Memory (LSTM) model was evaluated using various performance metrics to 
assess its effectiveness in forecasting lightning occurrences in Abuja. The confusion matrix shown in Figure 
4.6 provides a visual representation of the LSTM model's predictive performance. The model correctly 
predicted 16,891 instances where no lightning occurred (true negatives) and 12,158 instances where lightning 
did occur (true positives). However, there were 2,498 false negatives (lightning events that the model failed 
to predict) and 423 false positives (incorrectly predicting lightning when none occurred). These results 
demonstrate the model's overall capability to differentiate between lightning and non-lightning events, with 
particularly strong performance in minimising false positives. 

Table 1: LSTM classification report 
Metric Class 0 Class 1 Accuracy / Avg 
Precision 0.8712 0.9664 Macro Avg: 0.9188 
Recall 0.9756 0.8296 Macro Avg: 0.9026 
F1-Score 0.9204 0.8928 Macro Avg: 0.9066 
Support 17,314 14,656 Total: 31,970 
   Accuracy: 0.9086 
   Weighted Avg Precision: 0.9148 
   Weighted Avg Recall: 0.9086 
   Weighted Avg F1-Score: 0.9077 

 
The classification report in Table 1 provides a comprehensive assessment of the LSTM model's 

performance across various metrics. For the non-lightning class (0), the model achieved a precision of 0.87, 
recall of 0.98, and an F1-score of 0.92. This indicates that the model was highly effective at correctly identifying 
instances without lightning, with very few false negatives. For the lightning class (1), the model performed 
exceptionally well in terms of precision (0.97), suggesting that when the model predicted lightning, it was 
correct 97% of the time. The recall for the lightning class was 0.83, indicating that the model could capture 
83% of actual lightning occurrences. The resulting F1-score for the lightning class was 0.89, showing a good 
balance between precision and recall. The overall accuracy of the model was 0.91, which is quite high 
considering the imbalanced nature of the dataset. The macro-average F1-score of 0.91 and weighted-average 
F1-score of 0.91 further confirm the model's robust performance across both classes. These results are 
particularly noteworthy given the challenge of forecasting rare events like lightning occurrences. Figure 4.8 
presents the 365-day forecast of lightning occurrences for 2024 using the LSTM model. The forecast shows a 
clear seasonal pattern consistent with historical trends, with increased lightning activity predicted between 
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March and October. The highest concentration of lightning events is forecast for the months of May through 
September. 

 
Figure 7: showing the LSTM 1 year forecast for 2024 

 
3.4 CNN Model Performance Evaluation 

The Convolutional Neural Network (CNN) model was evaluated using various performance metrics 
to assess its lightning forecasting capabilities for Abuja, and to provide a basis for comparison with the LSTM 
model. Figure 8 presents the 365-day forecast of lightning occurrences for 2024 generated by the CNN model. 
The forecast shows a distinct pattern of lightning activity throughout the year, with increasing activity from 
March onward. A notable feature of the CNN forecast is the significant jump in predicted lightning activity 
in November, which appears as a sustained period of high activity (approximately 24 hours of lightning per 
day) that continues into December. This pattern differs from historical trends and the LSTM forecast, which 
typically show reduced lightning activity during these months. 

 
Figure 8: showing CNN model 1 year forecast for 2024 

 
3.5 Comparative Analysis of LSTM and CNN Models 

This section presents a comparative analysis of the LSTM and CNN models developed for lightning 
forecasting in Abuja, Nigeria, evaluating their strengths, weaknesses, and overall performance. The 
performance metrics of both models reveal significant differences in their forecasting capabilities. The LSTM 
model achieved an overall accuracy of 0.91, outperforming the CNN model's accuracy of 0.81. This 10% 
performance gap demonstrates the LSTM model's superior ability to correctly classify both lightning and non-
lightning events in the Abuja dataset. The LSTM model's balanced performance is further reflected in its 
macro-average F1-score of 0.91 compared to the CNN's 0.80. In terms of precision for the lightning class (1), 
the CNN model marginally outperformed the LSTM with a value of 0.98 versus 0.97. This indicates that both 
models were highly reliable when they predicted a lightning event, with very few false positives. However, 
the LSTM model demonstrated considerably better recall for lightning events (0.83) compared to the CNN 
model (0.63). This means the LSTM model was able to capture 20% more actual lightning occurrences, which 
is particularly important for early warning systems and safety applications. 

 
3.6 Resilience improvement and Auto-recloser operations 

Based on the results obtained and thoroughly compared between the LSTM and CNN models, only 
the LSTM architecture was ultimately deployed for the simulation phase to evaluate its capacity for resilience 
enhancement within the distribution network. This decision followed a detailed comparative assessment in 
which the LSTM consistently demonstrated superior temporal learning performance and stability, making it 
the most reliable model for operational forecasts. The LSTM model generated continuous hourly probabilities 
of lightning strikes for the entire year 2024, producing a comprehensive predictive dataset capable of 
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supporting day-to-day grid operations and proactive decision-making processes. Further examination and 
visual interpretation of the forecasted outputs, as illustrated in Figure 9, reveal distinct seasonal trends, with 
significantly elevated lightning probabilities occurring during Nigeria’s rainy season (April–October). The 
forecast shows especially notable peaks between April–June and again around September, reflecting the 
characteristic bimodal rainfall pattern observed across most regions of the country. These results closely align 
with documented historical climatological patterns and lightning occurrence records, thereby reinforcing the 
accuracy, consistency, and contextual relevance of the LSTM model in capturing real-world atmospheric 
behaviour. 

 

 
Figure 9: graph showing Auto-recloser effect on service interruptions 

 
3.7 Impact of lightning prediction on resilience enhancement 

The auto-recloser logic simulated in MATLAB significantly reduced the number and durations of 
customer interruptions, demonstrating clear operational benefits within the test network. By incorporating 
predictive information directly into the switching logic, the system achieved more accurate timing of recloser 
actions and reduced unnecessary device cycling. The decision threshold of 0.6 probability ensured that 
recloser actions were limited to genuinely high-risk periods, minimizing unnecessary operations while still 
maintaining strong protective coverage during lightning-prone conditions. This carefully selected threshold 
provided an effective balance between avoiding false triggers and ensuring rapid intervention when the risk 
level justified it. The integration of lightning prediction into the resilience strategy of the simulated Lugbe 
distribution network introduced a transformative shift in operational performance, moving the system from 
a reactive to a proactive mode of operation. By leveraging hourly strike probabilities, the control system 
dynamically anticipated and mitigated disruptions before they evolved into major outages, thereby enhancing 
overall reliability. This proactive response yielded tangible improvements in all three key resilience metrics 
as presented below in Figure 10 and Table 2, confirming that predictive intelligence can materially strengthen 
distribution network performance under extreme weather conditions. 

 

 
Figure 10: A graph showing annual outage comparison: lightning prediction impact 
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Figure 11: A chart showing SAIFI and SAIDI comparison for baseline and improved network 

 
Table 2: Baseline and improved network metrics 

Metric Baseline Network Improved Network Improvement (%) 
SAIFI 1.82 0.92 49 
SAIDI 3.5 1.15 67 
CAIDI 1.92 1.25 35 

 
3.8 Comparison of Resilience Metrics in Baseline Network and Improved Network 

From the results obtained as shown in figure 11 and tabulated in table 2; there is significant improvement 
in the resilience metrics leading to a reduction in the frequency of outages and the duration.  

● SAIFI Improvement: A reduction from 1.82 to 0.92 implies that customers experienced nearly half as 
many interruptions annually. This sharp decline is attributed to the preemptive action of auto-
reclosers that curtailed fault propagation during predicted lightning threats. The percentage 
improvement obtained is 49% which is considered significant. 

● SAIDI Reduction: Dropping from 3.50 to 1.15 hours per customer annually represents a 67% 
improvement. This indicates that not only were interruptions fewer, but they were also significantly 
shorter in duration, owing to the rapid fault clearing supported by predictive data. 

● CAIDI Optimization: The average duration per fault improved from 1.92 to 1.25 hours, demonstrating 
better fault localization and restoration efficiency. The improvement in CAIDI highlights operational 
responsiveness and better customer service.  

An improvement of 35% indicates that the average customer experienced less interruptions in electricity 
supply potentially leading to greater productivity. In practical terms, these improvements imply a more 
stable and reliable power supply. Utility companies benefit from reduced downtime, lower maintenance 
costs, and fewer customer complaints, while consumers enjoy improved service continuity. From a planning 
perspective, these metrics validate the use of lightning prediction as a resilience-enhancing technology, 
encouraging wider deployment. Moreover, the clear seasonal forecast provided utilities with the temporal 
insights necessary to prioritize feeder inspections, adjust protective device settings, and allocate emergency 
crews in a more data-driven manner. These strategic decisions culminate in a robust, responsive, and 
adaptive distribution network. 

 
4.0 Conclusion 

Based on the comprehensive analysis of two deep learning approaches for lightning forecasting in 
Abuja, this research concludes that: deep learning models can effectively forecast lightning occurrences in 
Abuja with high accuracy, with the LSTM model achieving 91% overall accuracy and the CNN model 
achieving 81% accuracy. The LSTM architecture is particularly effective for lightning forecasting due to its 
intrinsic ability to capture temporal dependencies and remember long-term patterns, which are essential 
characteristics of lightning phenomena. Also, temporal features, especially the previous hour's lightning 
status, are the strongest predictors of lightning occurrences, with correlation coefficients significantly higher 
than seasonal or diurnal indicators. 

Secondly, the significant class imbalance in lightning data (1.26% lightning versus 98.74% non-
lightning) presents a methodological challenge that requires careful consideration during model development 
to achieve balanced performance. Despite this, the 365-day forecasts generated by the LSTM model 
successfully capture both seasonal patterns and day-to-day variability in lightning occurrences, making it a 
valuable tool for long-term planning and risk assessment. Overall, the integration of predictive lightning 
strike analytics into power distribution systems significantly improves reliability metrics. The simulated 
Lugbe Distribution Network, under smart recloser control triggered by LSTM-based forecasts, exhibited 
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substantial reductions in both interruption frequency and duration. This suggests a strong case for predictive 
analytics in grid protection planning, especially in regions prone to frequent lightning activity. 
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