UNIABUJA Journal of Engineering and Technology

https://ujet.uniabuja.edu.ng/

ISSN: 2714-3236 (Online); 2714-3228 (Print)

Volume 3, Issue 1, 2025; 58-70

Neural Network-Based Early Lighting Strike Prediction for Distribution Infrastructure
Resilience Enhancement

Alli A. JIMOH!, Muhammad UTHMANS?, Ibrahim BEBE]I3
1.23Department of Electrical/Electronic Engineering, University of Abuja, Abuja, Nigeria
1allijimoh01@yahoo.com, 2m.uthman@yahoo.com, 3bebeji.abdulkareem@nasrda.gov.ng

Abstract

Lightning-induced disturbances are a major cause of power outages and equipment failures in medium-voltage
distribution networks, particularly across tropical regions such as Abuja, Nigeria. This study presents a neural
network-based early lightning prediction framework for Abuja, Nigeria, integrating advanced deep learning
techniques with power system simulation to support proactive grid management. Using hourly meteorological data
from 2013 to 2023 obtained from the Nigerian Meteorological Agency (NiMet), a seven-phase methodology was
employed, including data preprocessing, feature engineering, and exploratory data analysis to address class imbalance,
missing values, and temporal dependencies. Key features included lag variables, rolling aggregates, and cyclic temporal
encoding to capture diurnal and seasonal patterns. Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) models were optimized through hyperparameter tuning and evaluated using precision, recall, F1-
score, and forecast skill metrics. The LSTM achieved 91% accuracy and 83% recall, outperforming the CNN.
Predictions were integrated into a MATLAB-based distribution network simulation, where adaptive relay settings
and preemptive sectionalizing reduced breaker operations and outage durations. Reliability indices, including SAIDI
and SAIFI, improved compared to conventional reactive methods. Findings highlight LSTM-driven lightning
forecasting as a scalable solution for enhancing power distribution network resilience through predictive analytics and
automated operational strategies.
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1.0 Introduction

Lightning remains one of the most disruptive natural phenomena affecting power distribution
networks (Li, et al., 2024) (Souto et al., 2023) (Paulino, et al., 2021), particularly during convective weather
seasons. Statistics indicate that lightning-related trips account for 40 %-70 % of power line failures, imposing
substantial risks to grid stability and reliability. Traditional mitigation strategies—such as surge arresters,
shielding systems, and reactive reclosers —serve mainly as post-event defenses and lack predictive capacity.
Consequently, networks often endure unnecessary breaker operations and prolonged recovery times. Recent
strides in machine learning, particularly with Long Short-Term Memory (LSTM) networks, offer compelling
improvements in temporal forecasting of complex hydrometeorological events. Notably, LSTM-based models
have demonstrated superior performance over traditional process-driven models in rainfall-runoff
forecasting, (Kratzert et al., 2018) (Lees, et al., 2021) effectively learning long-term dependencies from input
sequences.

These results underscore the potential of deep-learning architectures to anticipate highly dynamic
and nonlinear phenomena—such as cumulative lightning activity —by leveraging historical meteorological
patterns. Embedding predictive analytics into power distribution system operations provides an opportunity
to shift from reactive to proactive resilience strategies (Jacobs et al., 2024) (Ghasemkhani, et al., 2024).
Probabilistic frameworks for assessing lightning strike impacts have been developed, incorporating weather-
based lightning activity and component failure probabilities to model the risk of system failures over time. By
integrating LSTM-driven lightning forecasts with adaptive control mechanisms—such as dynamic relay
adjustment and network sectionalizing — distribution networks can mitigate service interruptions, reduce
outage duration, and enhance key reliability metrics like SAIDI and SAIFI (Ahmad & Asar, 2021).

2.0 Methodology

This study adopted a structured analytical and computational methodology comprising four main
stages: data acquisition, preprocessing, model development, and performance evaluation. Historical lightning
occurrence data and associated meteorological parameters were collected from accredited sources and aligned
with operational datasets extracted from the simulated distribution network in ETAP. All datasets were
cleaned, normalized, and temporally synchronized using MATLAB and Python to eliminate noise and
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enhance modelling accuracy. A neural-network-based predictive model, implemented in Python using
supervised learning techniques, was trained on multi-year historical patterns and validated with independent
test sets to avoid overfitting. The resulting lightning strike forecasts were subsequently imported into ETAP,
where network behaviour was simulated under predicted disturbance conditions to evaluate the response of
key components. Performance metrics—including forecast accuracy, reliability indices, and resilience
enhancement factors—were computed within MATLAB and Python to quantify the effectiveness of the
proposed approach. This integrated ETAP-MATLAB-Python methodology ensures analytical rigour,
reproducibility, and alignment with established standards in power system resilience analysis.

2.1 Materials and Study Area

This study developed a neural network-based early lightning prediction and mitigation framework
for distribution network resilience enhancement. The methodology was designed in two primary phases: (1)
Lightning Forecasting Model Development and (2) Integration with Power System Simulation. Figure 1
presents the overall workflow. The study area chosen is Lugbe in Abuja, Lugbe experiences moderate to
intense thunderstorm activity during the rainy season. A good percentage of the customers are connected
directly to the H21 feeder at 33KV, Lugbe also incorporates a2 X 15MVA 33/11KV substation. The 11kV radial
feeder (feeders 2, 5 and 22) in this area supplies over 2000 customers and includes more than 50 distribution
transformers. The network is vulnerable to atmospheric discharges, necessitating a resilience-focused study.
The utility relies on manual isolation of the network on the threat of thunderstorm.

2.2 Data Acquisition, Preprocessing and Feature Engineering

The raw dataset provided by the Nigerian Meteorological Agency comprised 96,408 rows with 5
columns (YEAR, MONTH, DAY, HOUR, LIGHTNING_STRIKE), capturing hourly lightning-strike
occurrences in Abuja from 2013 to 2023. This extensive multi-year dataset offered a rich temporal structure
essential for training deep learning models, particularly those designed to learn long-term dependencies and
seasonal patterns. To enhance the predictive capability of the LSTM and CNN models, comprehensive
preprocessing and feature-engineering procedures were implemented. These procedures included handling
missing values, detecting and correcting temporal inconsistencies, normalizing nonlinear lightning-strike
magnitudes, and generating additional time-based features such as hour-of-day, day-of-year, and monthly
seasonal indices. The dataset was also resampled to ensure uniform hourly continuity, and outlier spikes—
often caused by sensor noise or atmospheric interference — were smoothed using rolling-window techniques
to improve model robustness. Furthermore, the final feature matrix was transformed into supervised learning
sequences tailored for deep learning architectures, with sliding-window frames capturing both short-term
and long-term temporal dynamics. Figure 2 below shows the algorithm for the research data preprocessing
and feature engineering, outlining each transformation step from raw hourly observations to structured,
model-ready inputs.
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Figure 1: An Algorithm showing data processing stages
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2.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was conducted to uncover patterns, trends, and underlying
relationships within the lightning-strike dataset for Abuja, Nigeria. This analytical phase played a crucial role
in identifying the temporal behaviours and variability of lightning occurrences across different seasons, years,
and hours of the day. Various statistical summaries, distribution plots, and time-series visualisations were
employed to assess the frequency and intensity of lightning events, detect anomalies, and highlight potential
outliers that could influence model performance. In addition, correlation analysis and trend decomposition
techniques were applied to reveal periodic structures linked to meteorological cycles such as the West African
Monsoon. Insights obtained from the EDA informed subsequent modelling decisions, including feature-
engineering strategies, selection of model hyperparameters, and the choice of appropriate data-normalisation
approaches. Overall, this phase provided a comprehensive contextual understanding of the meteorological
phenomena being studied and ensured that the predictive models were developed on a well-characterised
and statistically consistent dataset. The lines of code used for performing the EDA are shown below.

2.4 Distribution of Lightning Strike Occurrences

The initial analysis examined the binary distribution of lightning strike occurrences within the
compiled dataset. Findings revealed a notable and persistent imbalance, where non-occurrence instances
accounted for 76.8% of the total observations, substantially outweighing the 23.2% representing actual
lightning strike events. This uneven distribution underscores the skewed nature of the dataset and highlights
the challenges associated with modelling rare but operationally critical events such as lightning strikes. Such
an imbalance required deliberate methodological attention during model development to avoid inherent
algorithmic bias toward the majority class. Consequently, the modelling process incorporated strategies such
as class-weight adjustments, the selection of robust evaluation metrics capable of capturing minority-class
performance, and diagnostic checks to ensure that the predictive model maintained sensitivity to low-
frequency lightning events despite the dominance of negative observations.

2.5 Temporal Analysis of Lightning Strike Occurrences

A comprehensive time series analysis revealed distinctive and interpretable patterns in lightning
strike activity across multiple temporal scales. The investigation uncovered clear short-term fluctuations,
medium-term seasonal cycles, and long-term structural behaviours that collectively define the dynamics of
lightning occurrence in the study area. The longitudinal examination of thunderstorm occurrences from 2013
to 2023 demonstrated not only pronounced annual cyclicity but also noticeable inter-annual variability driven
by broader atmospheric conditions. Peaks in activity were consistently aligned with the wet season months,
reflecting the influence of convective intensity and moisture availability, while troughs corresponded to the
dry-season period characterized by reduced atmospheric instability. Notable periods of heightened lightning
activity were observed during 2016-2017 and 2021-2022, suggesting the potential influence of broader
climatological factors such as the El Nifio-Southern Oscillation or the West African Monsoon dynamics (Cai
et al., 2025) (Boateng et al., 2024) (Ngueto et al., 2026).

2.6 Seasonal Decomposition Analysis

Time series decomposition was performed to isolate the trend, seasonal, and residual components of
the lightning strike data. The multiplicative decomposition model was applied and expressed mathematically
(Sorhabbeig et al., 2023) in eqn. 1:

Y(t) = T(t) x S(t) X R(t) 1)

where Y(t) represents the original time series in strikes/hour, T(t) the trend component in strikes/hour, 5(t)
the seasonal component is a dimensionless multiplicative factor, and R(t) the residual component is also a
dimensionless multiplicative factor. The decomposition analysis confirmed strong seasonal patterns with an
annual periodicity. The trend component revealed multi-year cycles potentially linked to broader
climatological phenomena. The residual component analysis indicated predominantly stochastic variability,
though with occasional clustering of anomalous values suggesting the influence of extreme weather events or
mesoscale meteorological systems.

2.7 Long Short-Term Memory Model Development
The modelling framework was designed to capture the complex temporal dependencies inherent in
atmospheric and meteorological variables associated with thunderstorm formation. To achieve this, the study
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followed a structured pipeline that encompassed several critical stages, beginning with systematic data
preprocessing and splitting to ensure robust separation of training, validation, and testing subsets. This was
followed by the formulation of an optimized LSTM model architecture tailored to learn long-range sequential
patterns while mitigating issues such as vanishing gradients. The training phase incorporated iterative
backpropagation through time, coupled with the use of advanced optimization algorithms to enhance
convergence stability. Comprehensive model evaluation was then conducted using performance metrics
suitable for imbalanced time-series classification. Hyperparameter tuning—including adjustments to the
number of LSTM layers, hidden units, dropout rates, batch size, and learning rate — was executed to maximize
predictive accuracy and generalization capability. Finally, the fully optimized model was deployed for
operational inference, enabling reliable, data-driven forecasting of lightning strike events for enhanced
distribution network resilience.

2.7.1 LSTM Architecture

The implemented LSTM architecture incorporates three stacked LSTM layers with progressively decreasing
units (256, 128, and 64), facilitating hierarchical feature extraction from the temporal data. Each LSTM layer
processes sequences of engineered features extracted from the meteorological dataset, learning increasingly
abstract representations of lightning strike patterns at different temporal scales. Several programming steps
were performed using Python programming Language. The model culminates with two fully connected
layers: a hidden layer with 32 neurons and ReLU activation, followed by an output layer with sigmoid
activation for binary classification of lightning strike occurrences. Hyperparameter tuning was conducted
through a systematic grid search process to identify optimal configuration parameters. Performance
evaluation during hyperparameter tuning utilised precision as the primary metric, with model iterations
continuing until achieving the target precision threshold of 95% or completion of the predefined
hyperparameter search space.

2.7.2 LSTM Model Training and Evaluation Protocol

The model training procedure implemented an early stopping mechanism with a patience level of 10
epochs, continuously monitoring the validation loss to effectively prevent overfitting and ensure optimal
generalization performance. To further enhance learning reliability, class weights were incorporated during
training to mitigate the inherent class imbalance present in lightning strike occurrence data. The resulting
model architecture, containing a total of 546,369 parameters—of which 545,473 are trainable —reflects a
carefully calibrated compromise between representational complexity and computational efficiency. This
design ensures that the network remains expressive enough to capture the temporal dynamics of the dataset
without incurring unnecessary computational overhead. The final output layer generates probabilistic
estimates of lightning strike occurrences, which are subsequently subjected to a decision threshold to convert
these probabilities into binary predictive classes for operational interpretation.

2.8 Convolutional Neural Network Model Development

Convolutional Neural Networks were selected as an alternative predictive architecture due to their
established efficacy in pattern recognition and their ability to automatically extract hierarchical features from
sequential data. While traditionally applied to image processing tasks, CNNs have demonstrated significant
potential in time series forecasting applications through their capacity to detect local patterns and temporal
dependencies across different scales. The model training procedure implemented an early stopping
mechanism with patience set to 10 epochs, monitoring validation loss to prevent overfitting. Class weights
were applied during training to address the inherent class imbalance in lightning strike occurrences. The final
CNN model architecture comprises 35,553 total parameters (of which 35,361 are trainable), representing a
significantly more parameter-efficient architecture compared to the LSTM model. This computational
efficiency facilitates rapid training and deployment whilst maintaining predictive performance.

2.9 Resilience Enhancement Simulation

This provides a quantitative framework for assessing how distribution networks respond to
disturbances and how targeted interventions improve their ability to withstand, absorb, and recover from
extreme events such as lightning strikes, switching surges, or equipment failures. As highlighted by (Panteli
& Mancarella, 2015), simulation-based resilience assessment enables utilities to evaluate the dynamic behavior
of feeders, transformers, auto-reclosers, and protective devices under varying fault scenarios and to identify
system vulnerabilities before real-world failures occur. By integrating predictive models—such as neural-
network-based lightning forecasting — with power-system simulation environments, engineers can optimize
system hardening strategies and compare baseline performance with resilience-enhanced configurations
using reliability indices such as SAIFI, SAIDI, and CAIDI. Ultimately, resilience enhancement simulation

Received: 25-10-2025 / Accepted: 28-11-2025 / Published: 24-12-2025 61
https:/ /doi.org/10.70118 / ujet.2025.0301.07



Jimoh et al. (2025) Volume 3, Issue 1: 58-70

bridges real-world operational data with advanced computational modeling, offering a robust decision-
support mechanism for designing more secure and adaptive distribution infrastructures.

2.9.1 Lugbe Area Distribution Network

The GIS mapping of the Lugbe area distribution network was obtained from the Abuja Electricity
Distribution Company (AEDC), providing a detailed spatial representation of the network’s structural and
operational layout. The mapped infrastructure highlights an incoming 33 kV line sourced from the Apo H21
feeder, which serves as the primary supply route to the community. Within the network topology, a portion
of consumers is directly connected to the 33 kV feeder through dedicated distribution substations, typically
supporting large-load or strategically located customers. The remaining consumers receive supply from the
secondary side of the 2 x 15 MVA Lugbe Injection Substation, which steps down the voltage to 11 kV for
further distribution through numerous 11/0.415 kV distribution transformers distributed across the area. This
configuration reflects a hybrid supply structure that integrates both direct high-voltage connections and
stepped-down secondary distribution, providing an accurate foundation for subsequent network modelling,
reliability assessment, and resilience analysis.

2.9.2 Modeling of the Distribution Network in ETAP

The Lugbe distribution network was comprehensively modelled in ETAP, incorporating a significant
portion of the actual field network as obtained from the GIS data and AEDC operational records. The
developed model, illustrated in Figure 2 captures the primary feeders, distribution transformers, busbars, and
major load points necessary for accurate simulation. A load flow analysis was subsequently conducted to
evaluate the steady-state performance of the system under normal operating conditions. This analysis
provided detailed insights into bus voltage profiles, line loading conditions, and current flow patterns
throughout the network. The resulting voltage and current distributions provided a clear representation of
the overall network performance, revealing how power flows through the various feeders, buses, and
distribution lines. These results helped identify sections of the network that may be prone to undervoltage
conditions, potential overloads, or other operational constraints, thereby offering valuable insights for
evaluating network reliability and guiding future reinforcement or optimization efforts

T

Figure 2: An ETAP network model of Lugbe (Abuja) distribution topology

2.9.3 Implementation of Lightning Prediction in MATLAB/Simulink

The Lugbe combined 33 kV and 11 kV radial feeder network was exported as a simplified netlist and
subsequently adapted into MATLAB/Simulink using the Simscape Electrical environment to enable detailed
dynamic simulation. Within MATLAB, the lightning event dataset derived from the CSV file was seamlessly
integrated into the model to simulate the real-time behaviour of intelligent protection schemes and to drive
automated outage initiation scenarios. The CSV dataset provides hourly lightning risk indices on a normalized
scale from 0 (indicating no detectable risk) to 1 (indicating extremely high risk). For the purpose of simulation,
a threshold value of 0.6 was established as the trigger point for fault initiation. Whenever the lightning risk
index exceeded this threshold, the network model automatically generated a fault event at the corresponding
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time step. Embedded control logic was used to replicate preemptive feeder disconnection strategies, designed
to isolate vulnerable sections of the network and prevent more severe faults from occurring. This modelling
approach enabled a realistic assessment of protection response under varying lightning risk conditions
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Figure 3: A block diagram showing network resilience simulation in MATLAB

2.9.4 Integration of Lightning Prediction into Simulated Model for Resilience Improvement
To accommodate the imported ETAP network model, the MATLAB control script interacts with a structured
Simulink model where recloser elements are tagged based on their ETAP identifiers. The script adjusts relay
logic based on the imported lightning event data; the simulation was done for two scenarios as follows:
> baseline without lightning prediction, where faults occur according to historical lightning statistics,
and
» prediction-enabled, where preemptive control actions such as feeder disconnection and relay setting
adjustments are applied during high-risk periods to mitigate fault impact.
Relay TCC curves were dynamically adjusted in the ETAP model to reduce fault clearing times during
predicted lightning events. Time Multiplier Settings (TMS) and pickup currents were optimized to accelerate
relay response, minimizing outage duration while maintaining coordination margins to prevent mis-tripping.
Protective relays usually have an inverse-time characteristic, meaning they function more quickly when fault
currents are higher. This indicates that when the fault current magnitude rises, the relay travel time falls. By
isolating only the faulty sections, the TCC curve guarantees synchronization between upstream and
downstream protection devices, eliminating needless outages. A common mathematical model for the relay
operating time t as a function of fault current If and relay pickup current Ip is given by the IEC standard
inverse-time characteristic: (Munkhbaatar et al., 2024)

K
e— s x —K @
N,

I

where:
e t=relay operating time (seconds)
TMS = Time Multiplier Setting (dimensionless), scales the curve
I = fault current magnitude (Amperes)
I,, = relay pickup current (Amperes)
K = time scaling constant
a = inverse time exponent
K and o are curve constants depending on relay type (e.g, IEC Standard
Inverse: K=0.14, @=0.02)
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Annex A
(normative)

Constants for dependent time operating
and reset characteristics

"able A.1 shows the constant for dependent time operating and reset characteristics.

Table A.1 — Constants for dependent time operating and reset characteristics

Curve Operating time Reset time Commonly used
type _ o name
| k | te
HG)=TMS| ———— +c | t(G)=TMS| ————
o~ ¥ re X
=) | =)
11Ss ) ] . Gs .
k c -4 & a
s s s
A 0.14 0 0.02 = = Inverse
B 13.5 o 1 - - Very mverse
C 80 0 2 Extremely inverse
. - IEEE Moderately
= c c 2 8 2>
D 0.0515 0.1140 0.02 4.85 2 inearas
E 19.81 0.491 2 21.86 2 IEEE Very inverse
4 IEEE Extremely
F 28.2 0.1217 2 2e.1 2 inverse
For curves A, B and C. the manufacturer shall declare if dependent time reset characteristic is
mplemented and provide the appropriate information.

Figure 4: IEC Table 60255-151 showing different values for curve constants k and a

To demonstrate the effect of dynamically altering the time current characteristics on the tripping curve of
relays and operation of the associated auto-reclosers, a mathematical example was adduced as follows:
Assuming:
e Ip=100A
If=500A (fault current)
e TMS =1.0 (normal), reduced to 0.6 during high lightning risk
e K=0.14, a =0.02 (obtained from figure 4) for inverse operation
We calculate relay operating time using the baseline scenario as well as the adaptive scenario based on
available lightning strike prediction

I 500 4
PSM = L= 100—5
Where:
PSM = plug setting multiplier
Under normal operation:

0.14
50.02_1

thormar = 1.0 X %~ 0.0698 secs

High lightning risk (adaptive):
0.14
tnormar = 0.6 X

50.02_1

~ (0.0419 secs

The relay trips significantly faster during high-risk periods, reducing outage time.

2.10 Resilience Indices
To validly check for the improvement of the distribution network in relation to the integration of lightning
strike prediction data, simulated dynamic trip time setting as well as dynamic auto-recloser operations;
MATLAB scripts were implemented to include three resilience metrics as follows: SAIFI, SAIDI and CAIDI
Where:
SAIFI = System Average Interruption Frequency Index, it indicates the average number of times a
customer experiences a power outage within a specific period, usually a year, the mathematical expression

adapted from (Tellez et al., 2023) is given below equation (4):
SAIF] = YL AiNg _ Total number of interruptions of all users (4)
N Total number of users served

where 4; is the failure rate, N; is the number of users per location, and N; is the total number of users served.
SAIFI is measured in average outage units per customer over a year for a given study system.
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SAIDI: System Average Interruption Duration Index, it indicates how long, on average, a customer is
without power due to outages, the mathematical expression adapted from (Tellez et al., 2023) is given
below equation (6):
n
SAIDI = Zi=1

U;N; __ Sumof the duration of the interruptions of all users (6)

t Total number of users served

SAIDI is measured in time units, often hours. It is usually measured over the course of a year. Where N is the
number of clients in location i, U; is the yearly interruption time for location i, and N is the total number of
users served.
CAIDI: Customer Average Interruption Duration Index, it indicates how quickly a utility can resolve
power outages.

SAIDI
CAIDI = 242 (7)

The generated values for a baseline network without the benefit of a lightning prediction input and a
simulated network model with the benefit of a lightning prediction input were compared and used for
analysis on the relevance of lightning prediction.

3.0 Results and Discussion

The results show that the Long Short-Term Memory (LSTM) model adopted in this study provides
superior performance in forecasting lightning strike occurrences across the Lugbe distribution network. Using
NiMet’s 2013-2023 hourly atmospheric electricity dataset, the LSTM consistently captured the temporal
dependencies and nonlinear patterns associated with lightning-favorable conditions, achieving the lowest
forecasting error among all evaluated models. Comparative analysis with a benchmark CNN architecture
confirmed the LSTM’s advantage, as the CNN underperformed in long-sequence temporal learning and
exhibited higher error variability. When integrated into the ET AP-simulated distribution network, the LSTM’s
early warning forecasts enabled timely switching, improved coordination of protection devices, and pre-
emptive operational adjustments. These actions collectively reduced lightning-induced fault impacts and
resulted in observable improvements in resilience indicators such as SAIFI, SAIDI, and CAIDI. Overall,
findings confirm that the LSTM-based prediction framework significantly enhances early lightning detection
and strengthens the reliability of Abuja’s distribution infrastructure.

3.1 Materials

The exploratory data analysis (EDA) was carried out on the data obtained from Nimet spanning from
2013 to 2023 for Abuja, Nigeria. Figure 5 shows the distribution of lightning occurrences in the dataset. From
the plot in Figure 5, it is evident that for the period of analysis (2013 to 2023), only 1,214 lightning occurrences
were recorded, whilst 95,194 time periods had no lightning events. This reveals a substantial imbalance in the
dataset, with lightning events representing merely 1.26% of the total observations. This imbalance was
carefully considered during the development of both the LSTM and CNN models to ensure proper training
and forecasting outcomes.

Lightning (1) wvs. Mo Lightning (0) Count

B0000

SO0000

Count

40000

20000

(o] 1
Lightning Ocourrence

Figure 5: A chart showing lightning Count as a low occurrence event

3.2 Time-Series Decomposition

The time series decomposition in Figure 6 separates the lightning data into four components: original
data (blue), trend (green), seasonality (orange), and residuals (red). The original data in the top panel shows
the binary nature of lightning occurrences across the entire study period from 2013 to 2024. The trend
component reveals cyclical patterns over multi-year periods, with peaks occurring approximately every 2-3
years. This suggests longer-term climate influences on lightning activity in Abuja. The seasonality component
confirms the consistent annual pattern identified in the monthly analysis, with regular oscillations that remain
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stable throughout the dataset. The residual component represents the random variation that cannot be
explained by trend or seasonality. The consistency of these patterns throughout the dataset provided a solid
foundation for the forecasting capabilities of both LSTM and CNN models, as they learnt from these temporal
dependencies to predict future lightning occurrences.

2014 2016 2018 2020 2022 2024

2014 2016 2018 2020 2022 2024

0.04 Seasonality

2014 2016 2018 2020 2022 2024

Residuals

2014 2016 2018 2020 2022 2024

Figure 6: A chart showing lightning seasonal trend

3.3 LSTM Model Performance Evaluation

The Long Short-Term Memory (LSTM) model was evaluated using various performance metrics to
assess its effectiveness in forecasting lightning occurrences in Abuja. The confusion matrix shown in Figure
4.6 provides a visual representation of the LSTM model's predictive performance. The model correctly
predicted 16,891 instances where no lightning occurred (true negatives) and 12,158 instances where lightning
did occur (true positives). However, there were 2,498 false negatives (lightning events that the model failed
to predict) and 423 false positives (incorrectly predicting lightning when none occurred). These results
demonstrate the model's overall capability to differentiate between lightning and non-lightning events, with
particularly strong performance in minimising false positives.

Table 1: LSTM classification report

Metric Class 0 Class 1 Accuracy / Avg
Precision 0.8712 0.9664 Macro Avg: 0.9188
Recall 0.9756 0.8296 Macro Avg: 0.9026
F1-Score 0.9204 0.8928 Macro Avg: 0.9066
Support 17,314 14,656 Total: 31,970

Accuracy: 0.9086

Weighted Avg Precision: 0.9148
Weighted Avg Recall: 0.9086
Weighted Avg F1-Score: 0.9077

The classification report in Table 1 provides a comprehensive assessment of the LSTM model's
performance across various metrics. For the non-lightning class (0), the model achieved a precision of 0.87,
recall of 0.98, and an F1-score of 0.92. This indicates that the model was highly effective at correctly identifying
instances without lightning, with very few false negatives. For the lightning class (1), the model performed
exceptionally well in terms of precision (0.97), suggesting that when the model predicted lightning, it was
correct 97% of the time. The recall for the lightning class was 0.83, indicating that the model could capture
83% of actual lightning occurrences. The resulting F1-score for the lightning class was 0.89, showing a good
balance between precision and recall. The overall accuracy of the model was 0.91, which is quite high
considering the imbalanced nature of the dataset. The macro-average F1-score of 0.91 and weighted-average
Fl-score of 0.91 further confirm the model's robust performance across both classes. These results are
particularly noteworthy given the challenge of forecasting rare events like lightning occurrences. Figure 4.8
presents the 365-day forecast of lightning occurrences for 2024 using the LSTM model. The forecast shows a
clear seasonal pattern consistent with historical trends, with increased lightning activity predicted between
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March and October. The highest concentration of lightning events is forecast for the months of May through
September.

365-Day Lightning Storm Forecast & Trend using LSTM
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Figure 7: showing the LSTM 1 year forecast for 2024

3.4 CNN Model Performance Evaluation

The Convolutional Neural Network (CNN) model was evaluated using various performance metrics
to assess its lightning forecasting capabilities for Abuja, and to provide a basis for comparison with the LSTM
model. Figure 8 presents the 365-day forecast of lightning occurrences for 2024 generated by the CNN model.
The forecast shows a distinct pattern of lightning activity throughout the year, with increasing activity from
March onward. A notable feature of the CNN forecast is the significant jump in predicted lightning activity
in November, which appears as a sustained period of high activity (approximately 24 hours of lightning per
day) that continues into December. This pattern differs from historical trends and the LSTM forecast, which
typically show reduced lightning activity during these months.

365-Day Lightning Storm Forecast & Trend using LSTM
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Figure 8: showing CNN model 1 year forecast for 2024
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3.5 Comparative Analysis of LSTM and CNN Models

This section presents a comparative analysis of the LSTM and CNN models developed for lightning
forecasting in Abuja, Nigeria, evaluating their strengths, weaknesses, and overall performance. The
performance metrics of both models reveal significant differences in their forecasting capabilities. The LSTM
model achieved an overall accuracy of 0.91, outperforming the CNN model's accuracy of 0.81. This 10%
performance gap demonstrates the LSTM model's superior ability to correctly classify both lightning and non-
lightning events in the Abuja dataset. The LSTM model's balanced performance is further reflected in its
macro-average Fl-score of 0.91 compared to the CNN's 0.80. In terms of precision for the lightning class (1),
the CNN model marginally outperformed the LSTM with a value of 0.98 versus 0.97. This indicates that both
models were highly reliable when they predicted a lightning event, with very few false positives. However,
the LSTM model demonstrated considerably better recall for lightning events (0.83) compared to the CNN
model (0.63). This means the LSTM model was able to capture 20% more actual lightning occurrences, which
is particularly important for early warning systems and safety applications.

3.6 Resilience improvement and Auto-recloser operations

Based on the results obtained and thoroughly compared between the LSTM and CNN models, only
the LSTM architecture was ultimately deployed for the simulation phase to evaluate its capacity for resilience
enhancement within the distribution network. This decision followed a detailed comparative assessment in
which the LSTM consistently demonstrated superior temporal learning performance and stability, making it
the most reliable model for operational forecasts. The LSTM model generated continuous hourly probabilities
of lightning strikes for the entire year 2024, producing a comprehensive predictive dataset capable of
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supporting day-to-day grid operations and proactive decision-making processes. Further examination and
visual interpretation of the forecasted outputs, as illustrated in Figure 9, reveal distinct seasonal trends, with
significantly elevated lightning probabilities occurring during Nigeria’s rainy season (April-October). The
forecast shows especially notable peaks between April-June and again around September, reflecting the
characteristic bimodal rainfall pattern observed across most regions of the country. These results closely align
with documented historical climatological patterns and lightning occurrence records, thereby reinforcing the
accuracy, consistency, and contextual relevance of the LSTM model in capturing real-world atmospheric
behaviour.

Lightning, Recloser, and Interruptions

—e— Lightning —— Recloser Ops Interruptions

Event Count

Month

Figure 9: graph showing Auto-recloser effect on service interruptions

3.7 Impact of lightning prediction on resilience enhancement

The auto-recloser logic simulated in MATLAB significantly reduced the number and durations of
customer interruptions, demonstrating clear operational benefits within the test network. By incorporating
predictive information directly into the switching logic, the system achieved more accurate timing of recloser
actions and reduced unnecessary device cycling. The decision threshold of 0.6 probability ensured that
recloser actions were limited to genuinely high-risk periods, minimizing unnecessary operations while still
maintaining strong protective coverage during lightning-prone conditions. This carefully selected threshold
provided an effective balance between avoiding false triggers and ensuring rapid intervention when the risk
level justified it. The integration of lightning prediction into the resilience strategy of the simulated Lugbe
distribution network introduced a transformative shift in operational performance, moving the system from
a reactive to a proactive mode of operation. By leveraging hourly strike probabilities, the control system
dynamically anticipated and mitigated disruptions before they evolved into major outages, thereby enhancing
overall reliability. This proactive response yielded tangible improvements in all three key resilience metrics
as presented below in Figure 10 and Table 2, confirming that predictive intelligence can materially strengthen
distribution network performance under extreme weather conditions.

Annual Outage Comparison: Lightning Prediction Impact
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Figure 10: A graph showing annual outage comparison: lightning prediction impact
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Figure 11: A chart showing SAIFI and SAIDI comparison for baseline and improved network

Table 2: Baseline and improved network metrics

Metric Baseline Network Improved Network Improvement (%)
SAIFI 1.82 0.92 49
SAIDI 3.5 1.15 67
CAIDI 1.92 1.25 35

3.8 Comparison of Resilience Metrics in Baseline Network and Improved Network

From the results obtained as shown in figure 11 and tabulated in table 2; there is significant improvement

in the resilience metrics leading to a reduction in the frequency of outages and the duration.

e SAIFI Improvement: A reduction from 1.82 to 0.92 implies that customers experienced nearly half as
many interruptions annually. This sharp decline is attributed to the preemptive action of auto-
reclosers that curtailed fault propagation during predicted lightning threats. The percentage
improvement obtained is 49% which is considered significant.

e SAIDI Reduction: Dropping from 3.50 to 1.15 hours per customer annually represents a 67%
improvement. This indicates that not only were interruptions fewer, but they were also significantly
shorter in duration, owing to the rapid fault clearing supported by predictive data.

e CAIDIOptimization: The average duration per fault improved from 1.92 to 1.25 hours, demonstrating
better fault localization and restoration efficiency. The improvement in CAIDI highlights operational
responsiveness and better customer service.

An improvement of 35% indicates that the average customer experienced less interruptions in electricity
supply potentially leading to greater productivity. In practical terms, these improvements imply a more
stable and reliable power supply. Utility companies benefit from reduced downtime, lower maintenance
costs, and fewer customer complaints, while consumers enjoy improved service continuity. From a planning
perspective, these metrics validate the use of lightning prediction as a resilience-enhancing technology,
encouraging wider deployment. Moreover, the clear seasonal forecast provided utilities with the temporal
insights necessary to prioritize feeder inspections, adjust protective device settings, and allocate emergency
crews in a more data-driven manner. These strategic decisions culminate in a robust, responsive, and
adaptive distribution network.

4.0 Conclusion

Based on the comprehensive analysis of two deep learning approaches for lightning forecasting in
Abuja, this research concludes that: deep learning models can effectively forecast lightning occurrences in
Abuja with high accuracy, with the LSTM model achieving 91% overall accuracy and the CNN model
achieving 81% accuracy. The LSTM architecture is particularly effective for lightning forecasting due to its
intrinsic ability to capture temporal dependencies and remember long-term patterns, which are essential
characteristics of lightning phenomena. Also, temporal features, especially the previous hour's lightning
status, are the strongest predictors of lightning occurrences, with correlation coefficients significantly higher
than seasonal or diurnal indicators.

Secondly, the significant class imbalance in lightning data (1.26% lightning versus 98.74% non-
lightning) presents a methodological challenge that requires careful consideration during model development
to achieve balanced performance. Despite this, the 365-day forecasts generated by the LSTM model
successfully capture both seasonal patterns and day-to-day variability in lightning occurrences, making it a
valuable tool for long-term planning and risk assessment. Overall, the integration of predictive lightning
strike analytics into power distribution systems significantly improves reliability metrics. The simulated
Lugbe Distribution Network, under smart recloser control triggered by LSTM-based forecasts, exhibited
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substantial reductions in both interruption frequency and duration. This suggests a strong case for predictive
analytics in grid protection planning, especially in regions prone to frequent lightning activity.
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