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Abstract  
This study applies the Autoregressive Integrated Moving Average (ARIMA) modelling technique to Predict key water 
quality indicators of the river Benue in Jimeta, Yola, Nigeria. Utilizing a ten-year dataset (2011–2021) obtained from 
the Adamawa State Ministry of Water Resources. The research focused on three essential parameters: pH, calcium 
(mg/L), and iron (mg/L). Following the Box-Jenkins methodology, the data were analysed for stationarity for test using 
the Augmented Dickey-Fuller test, model identification via ACF/PACF analysis, parameter estimation, diagnostic 
checking, and forecasting. Results indicated that the ARIMA (0,0,1) model best fits the pH and iron data showing 
values are stable, primarily influenced by short-term random shocks (MA process)., while the ARIMA (1,0,0) model 
suits calcium, indicating values fluctuate more, influenced by their immediate past value (AR process). Forecasting 
results showed a stable average pH of 7.23, fluctuating calcium levels averaging around 61.85 mg/L, and a consistent 
iron concentration of approximately 0.1523 mg/L over the projected ten-year period (2023–2032). Diagnostic checks 
confirmed that all selected models were stable, stationary, and invertible, with no unit roots. These findings 
demonstrate ARIMA’s effectiveness in capturing temporal dynamics in water quality and provide a reliable foundation 
for proactive environmental monitoring, planning, and decision-making. 
 
Keywords: Modelling, River Benue, Water, Forecasting, Time Series, Concentration, Stationarity Test, 

Management. 
 

1.0 Introduction 
Water pollution is a growing global concern, driven by rapid population growth, industrialization, and 

agricultural expansion. As water is a critical natural resource and a core element of ecosystems, monitoring 
its quality is essential for sustaining human health and environmental balance. Degradation in water quality 
leads to increased costs in treatment and heightened health risks for communities that rely on untreated or 
poorly monitored sources (Ejiohuo, et al., 2024). These concerns necessitate continuous monitoring and robust 
assessment systems to ensure the safe and sustainable use of water resources. 

Water quality is indeed influenced by both natural factors like climate, geology, and biological processes, 
and anthropogenic (human-caused) factors such as industrial and agricultural activities, land use changes. 
Since no single parameter can fully describe water quality, comprehensive assessment involves monitoring a 
wide range of physical, chemical, and biological indicators (Ayob et al., 2018). Limited water quality data, 
particularly in smaller streams and rural areas, can hinder efforts to understand spatial patterns and 
implement effective water management programs (XiaoYing et al., 2017). Modeling approaches that correlate 
watershed characteristics with observed water quality can help fill data gaps and inform pollution control 
strategies (Aho et al., 2018). 

Predictive modelling plays a vital role in water quality management by forecasting changes in key 
parameters and aiding early intervention. Time series models, especially the Autoregressive Integrated 
Moving Average (ARIMA), have been successfully used to forecast variables such as pH, turbidity, ammonia, 
and heavy metals in river systems (Ayob et al., 2018; Sentas et al., 2018); These models are particularly valuable 
due to their ability to handle non-stationary data and capture dynamic environmental changes. They serve as 
essential tools for policy-makers and environmental agencies to simulate future scenarios and design effective 
control measures (Twinomuhangi et al., 2025; Ahamad et al., 2015). 

ARIMA models have been extensively applied in river water-quality forecasting because they capture 
time-dependent structures in environmental data through the Box–Jenkins procedure of model identification, 
estimation, diagnostic checking and forecasting. Shahid and Mohsenipour (2017) demonstrated this capability 
on the Johor River in Malaysia, successfully predicting short-term fluctuations in pH and other hydrological 
variables. Similarly, Sentas et al. (2018) showed that ARIMA effectively described the temporal dynamics of 
both water quality and quantity in Greece’s River Pinios. Hardiyanti (2020) confirmed the method’s predictive 
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strength for river water quality in Indonesia, provided the time series is stationary. Where river systems 
exhibit strong seasonal cycles, seasonal ARIMA extensions have been shown to improve forecast accuracy, as 
reported in Water Practice & Technology (2022). More recently, Wang, Chen and Tang (2024) proposed 
ARIMA–MLP and ARIMA–SSA–LSTM hybrid models, which combine the linear strengths of ARIMA with 
machine-learning techniques to better capture nonlinear dynamics, achieving higher predictive accuracy than 
classical ARIMA. Despite these advances, ARIMA remains best suited to short-term forecasts and is limited 
in its ability to incorporate exogenous environmental drivers (Ayob et al., 2017; Sentas et al., 2018). 

ARIMA, as defined by Stellwagen, and Tashman (2013), means autoregression (AR), Integrated (I), and 
moving average (MA) components to model time-dependent processes. The strength of ARIMA lies in its 
ability to use historical data trends and residual errors to forecast future values, making it ideal for 
applications where environmental variables fluctuate unpredictably over time. When used with high-quality 
data, ARIMA models can forecast water quality trends with reasonable accuracy and support adaptive water 
management strategies (Chakraborty et al., 2019; Zhu et al., 2021). As such, applying ARIMA to river water 
quality analysis contributes significantly to ensuring the long-term sustainability of freshwater resources. 

The River Benue, a vital water source for Jimeta–Yola, faces increasing contamination risks, necessitating 
ARIMA-based predictive modeling to forecast key quality indicators (pH, calcium, iron) for sustainable 
management and public health protection. ARIMA modeling provides a reliable tool for forecasting key water 
quality parameters, enabling timely interventions and supporting sustainable management of the River 
Benue. The water quality of River Benue requires thorough investigation, as it is a vital drinking water source 
for communities like Jimeta Yola. Ongoing human activities are contributing to environmental degradation 
and potential contamination, posing risks to public health. Therefore, regular monitoring and classification of 
water quality are essential for effective management and protection of the river. This study aims to develop 
and evaluate ARIMA models for forecasting selected river water quality indicators, thereby supporting 
effective environmental monitoring and decision-making for Jimeta Yola, Adamawa State Nigeria. 

 
2.0 Materials and Methods 
2.1 The Study Area 

The study was conducted along the River Benue in Jimeta, located in Yola North Local Government Area 
of Adamawa State, Nigeria, within latitudes 9˚7'30'' and 10˚50''N and longitudes 11˚40'' and 13˚20''E. The area 
lies within the sub-Sudan and northern Guinea savannah vegetation zones, characterized by sparse vegetation 
comprising grasses, shrubs, and a mix of indigenous and exotic trees. The topography is generally flat and is 
intersected by the River Benue (Adaeze et al., 2017). The region receives less than 1000 mm of mean annual 
rainfall in its central and north-western parts, with rainfall distribution influenced by altitude. Rainfall 
typically begins in April in the south and May in the north, ending between September and November, with 
the rainy season lasting between 120 and 210 days. Temperature patterns follow typical West African 
savannah trends, with high solar radiation causing a gradual increase in temperatures from January to April. 
Temperatures drop at the onset of rains due to cloudiness, rise again slightly after the rains, and fall further 
during harmattan in December. Minimum temperatures can fall to 18˚C (December–January), while 
maximums can reach 40˚C in April, with average monthly temperatures ranging from 26˚C to 27.8˚C 
(Adebayo & Tukur, 1999; Tukur et al., 2004). 

 

 
Figure 1: (a) Map of Adamawa State and Map of Study Area (Adebayo & Tukur, 1999; Tukur, Bashir, & 

Mubi, 2004). 
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2.2 ARIMA Model Equations 

The ARIMA (Autoregressive Integrated Moving Average) model is a widely used statistical method for 
analysing and forecasting time series data. It is denoted as ARIMA(𝑝𝑝,𝑑𝑑, 𝑞𝑞), where p is the order of 
autoregression (AR), d is the order of differencing (I), and q is the order of moving average (MA). 
 
2.2.1 Autoregressive (AR) Part 

The AR(p) process is represented as: 
 
𝑌𝑌ₜ =  𝑐𝑐 +  𝜙𝜙₁𝑌𝑌ₜ₋₁ +  𝜙𝜙₂𝑌𝑌ₜ₋₂ +  ⋯  +  𝜙𝜙ₚ𝑌𝑌ₜ₋ₚ +  𝜀𝜀ₜ                                      (1) 
 
2.2.1. Integrated (I) Part 

The I(d) process applies differencing to make the series stationary: 
𝑌𝑌′ₜ =  (1 −  𝐵𝐵)ᵈ 𝑌𝑌ₜ                                         (2) 
 
For example, with 𝑑𝑑 = 1: 
𝑌𝑌′ₜ =  𝑌𝑌ₜ −  𝑌𝑌ₜ₋₁                                         (3) 
 
2.2.2 Moving Average (MA) Part 

The MA(q) process is: 
 
𝑌𝑌ₜ =  𝜇𝜇 +  𝜀𝜀ₜ +  𝜃𝜃₁𝜀𝜀ₜ₋₁ +  𝜃𝜃₂𝜀𝜀ₜ₋₂ +  ⋯  +  𝜃𝜃_𝑞𝑞𝑞𝑞ₜ₋𝑞𝑞                                     (4) 
 
2.2.3 Full ARIMA Model 

Combining AR, I, and MA gives the ARIMA(𝑝𝑝,𝑑𝑑, 𝑞𝑞) equation: 
 
𝜙𝜙(𝐵𝐵)(1 −  𝐵𝐵)ᵈ 𝑌𝑌ₜ =  𝑐𝑐 +  𝜃𝜃(𝐵𝐵)𝜀𝜀ₜ                                       (5) 
 
where: 

𝜙𝜙(𝐵𝐵)  =  1 −  𝜙𝜙₁𝐵𝐵 −  𝜙𝜙₂𝐵𝐵² −  ⋯  −  𝜙𝜙ₚ𝐵𝐵ᵖ (𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
𝜃𝜃(𝐵𝐵)  =  1 +  𝜃𝜃₁𝐵𝐵 +  𝜃𝜃₂𝐵𝐵² + ⋯  +  𝜃𝜃_𝑞𝑞𝑞𝑞_𝑞𝑞 (𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

 
2.3 Implementation of ARIMA model for water properties 

The flowchart in Figure. 2 depicts the technique for estimating the ARIMA model, which includes the 
following steps (Wang. 2018). 
 

 
Figure 2: The Iterative Box-Jenkins (ARIMA) Modelling Strategy 
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2.3.1. Identification 
In this stage, the observed time series data were plotted to visually assess patterns and trends. The 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the observed series were 
examined to understand the correlation structures at different lags. A stationarity check was conducted, and 
if the series was non-stationary, transformations (e.g., differencing or logarithmic transformation) were 
applied to stabilize the mean and variance over time. The required order of differencing was determined, and 
a tentative model form and order (i.e., values of p, d, q) were identified based on visual and statistical 
interpretations of the ACF and PACF plots (AbdulWahid, & Arunbabu, 2022; Wang, 2018). 

 
2.3.2 Estimation 

In the estimation phase, model parameters were estimated using statistical techniques such as maximum 
likelihood estimation. The fitted values and residuals were computed and assessed. The significance of the 
estimated parameters was evaluated to ensure that each contributed meaningfully to the model. Conditions 
for stationarity and invertibility were verified to confirm that the model adhered to theoretical assumptions. 
The correlation among estimated parameters was also checked to detect multicollinearity or redundancy. If 
the parameter estimates were found to be satisfactory, the process proceeded to the next stage. If not, the 
model form was revisited and modified (AbdulWahid, & Arunbabu, 2022; Wang, 2018). 
 
2.3.3. Diagnostic Checking 

The residuals from the estimated model were analyzed using ACF and PACF plots to ensure they behaved 
like white noise—that is, having no significant autocorrelations. The significance of the residual 
autocorrelations was checked at every lag order, and an overall test was conducted to determine whether the 
group of lag orders was collectively insignificant. If the residuals passed these checks, they were considered 
white noise (AbdulWahid, & Arunbabu, 2022; Wang, 2018). 
 
2.3.4. Forecasting and Conclusion 

Once white noise residuals were confirmed, the model was deemed valid, and forecasting was carried out 
based on the final ARIMA model. The process concluded at this point, having developed a statistically sound 
model for time series forecasting (AbdulWahid, & Arunbabu, 2022; Wang, 2018). 
 
2.4 Data collection and Analysis 

This study utilized a ten-year dataset (2011–2021) consisting of monthly monitoring records of three key 
water quality parameters—pH, calcium (mg/L), and iron (mg/L)—from the River Benue. The dataset was 
obtained from the Adamawa State Ministry of Water Resources through the State Water Board, which 
operates designated monitoring stations along the river. Measurements were systematically recorded to 
capture spatial and temporal variations in water quality across the study period. 
The study focused on predictive modeling of the three selected parameters to assess long-term trends and 
variability. Time series methods were employed using EViews 13 (S&P Global) statistical software, which 
facilitated data preprocessing, stationarity testing, model estimation, and forecast evaluation. The structured 
approach ensured reliability of results and provided insights into the temporal dynamics of water quality 
indicators in the River Benue. 
 
3.0 Results and Discussion 
3.1 ARIMA Model Stationarity Test  

Table 1 presents the results of the Augmented Dickey-Fuller (ADF) test conducted on the time series data 
for pH, calcium, and iron. The test statistics for all three parameters were considerably more negative than the 
5% critical value of –2.8859, confirming that the null hypothesis of a unit root can be rejected. 

The stationarity of selected water quality parameters was assessed using the Augmented Dickey-Fuller 
(ADF) test to determine the presence of unit roots in the time series data. Parameters tested included pH, 
calcium, and iron. The ADF test statistics for all parameters were substantially more negative than the 5% 
critical value threshold of approximately -2.8859, indicating a strong rejection of the null hypothesis that the 
series contains a unit root. Furthermore, the associated p-values were extremely low (0.00001), reinforcing the 
conclusion of statistical significance. These results confirm that the datasets for all parameters are stationary, 
implying that their fluctuations over the ten-year period were random and not influenced by persistent trends 
or long-term systematic changes. 
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Table 1: Augmented Dickey–Fuller Stationarity Test Results for Key Water-Quality Parameters 
Parameter 
 

ADF Test 
(Level)  

Test 
Critical 
(Level) 

Stationarity (Level) 5% significant 
(Level) 

pH -9.49251 -2.885863 Stationary Data 0.00001 
Calcium (mg/L) -8.34001 -2.885863 Stationary Data 0.00001 
Iron (mg/L) -7.52078 -2.885863 Stationary Data 0.00001 

 
3.2 ARIMA Model Identification 

Table 2 presents the model selection results for ARIMA models fitted to pH, Calcium (mg/L), and Iron 
(mg/L) using the Akaike Information Criterion (AIC) and Schwarz Criterion (SC) as performance metrics. 
The table shows that for the pH parameter, the ARIMA (0,0,1) model recorded the lowest AIC (-3.9984) and 
SC (-3.9484), indicating the best model fit with minimal complexity. Similarly, for Calcium, the ARIMA (1,0,0) 
model achieved the lowest AIC and SC values (0.52223), suggesting it provides the optimal balance between 
fit and simplicity. In the case of Iron, the ARIMA (0,0,1) model was found to be the most suitable, with the 
lowest AIC (2.194081) and SC (2.263768) values among the evaluated models. These showed that ARIMA 
(0,0,1) for pH and Iron, and ARIMA (1,0,0) for Calcium, as the most appropriate models for forecasting and 
further analysis of water quality parameters. These findings align with related studies where ARIMA models 
were shown to effectively capture temporal dynamics of water quality indicators, providing reliable forecasts 
for pH, dissolved solids, and heavy metals (Wang, Chen and Tang 2024; Shrestha & Kazama, 2007). The 
reliance on AIC and SC as selection criteria is consistent with best practices in time series modeling, ensuring 
models are both parsimonious and robust for environmental data analysis. 

 
Table 2: AIC and SC Values for pH, Calcium, and Iron 

Model (ARIMA) ph Akaike info criterion (AIC) Schwarz criterion (SC) 
(0,0,1) -3.9984 -3.9484 
(1,0,0) -3.9961 -3.9287 
(0,0,0) -3.9949 -3.9264 
(1,0,1) -3.9832 -3.8903 

Model (ARIMA) Calcium (mg/L) Akaike info criterion (AIC) Schwarz criterion (SC) 
(1,0,0) 0.52223 0.52223 
(0,0,1) 0.534675 0.534675 
(0,0,0) 0.568687 0.536694 
(1,0,1) 0.536694 0.568687 

Model (ARIMA) Iron (mg/L) Akaike info criterion (AIC) Schwarz criterion (SC) 
(0,0,1) 2.194081 2.263768 
(1,0,1) 2.209595 2.302512 
(1,0,0) 2.23749 2.307177 
(0,0,0) 2.346735 2.393193 

 
3.3 ARIMA Model Estimation 

Table 3 presents the estimated ARIMA model coefficients for pH, Calcium (mg/L), and Iron (mg/L) 
parameters, including the intercept (C), autoregressive (AR), and moving average (MA) components, along 
with the standard error (S.E) of regression. Results indicated that for pH, the model includes all three 
components with an intercept of 7.23544, a weak AR term (0.15308), a minor MA effect (0.05233), and an S.E 
of 0.23167, indicating limited unexplained variability. The Calcium model features an intercept of 60.687578 
and a small AR term (0.254311), with no MA component, and a relatively high S.E of 18.04508, suggesting 
significant variation likely due to natural or measurement factors. For Iron, the model includes an intercept 
of 0.1786807 and a moderately negative MA term (-0.4134143), with no AR component, and a low S.E of 
0.055342, reflecting limited unexplained variation. Overall, the ARIMA models indicate differing dynamics 
for each parameter, with pH and Iron influenced more by moving average components, while Calcium 
exhibits autoregressive behavior without MA influence. These findings are in line with previous studies, 
where pH and calcium often display weak autoregressive behavior due to buffering and gradual changes, 
whereas iron concentrations tend to be more responsive to abrupt external disturbances, showing stronger 
moving average effects (Shamsuddin & Johari, 2016; Zafra-Mejía et al., 2024). Such consistency reinforces the 
suitability of ARIMA models for capturing the temporal behavior of different water quality indicators. 
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Table 3: ARIMA Model Coefficients for pH, Calcium, and Iron 

Parameter Intercept  
C 

Autoregressive 
(AR) 

Moving Average 
(MA) 

S.E of 
Regression 

pH 7.23544 0.15308 0.05233 0.23167 
Calcium (mg/L) 60.687578 0.254311 - 18.04508 
Iron (mg/L) 0.1786807 - 0.4134143 0.055342 

 
3.4 ARIMA Model Equations 

The ARIMA model equations for pH, Calcium (mg/L), and Iron (mg/L) are presented, with model 
identification carried out using ACF and PACF plots, followed by estimation and validation through 
diagnostic checks. 
 
3.4.1 pH – ARIMA (0,0,1) 

The ARIMA (0,0,1) model for pH characterizes the series as a stationary moving average process of order 
one. This means the current value depends mainly on the overall mean and the influence of present and past 
random shocks, rather than lagged pH values. Equation 6 shows the intercept establishes a long-term mean 
of about 7.24, which represents stable water quality conditions near neutrality. The moving average coefficient 
is small and positive, indicating that roughly 5.2% of the previous error contributes to the current value. This 
suggests the series responds primarily to current random disturbances rather than prolonged effects of past 
fluctuations. The model shows that river pH remains generally stable around its mean, with minor short-term 
variations caused by random shocks. Past errors have minimal impact and fade quickly. Tizro et al. (2016) 
demonstrated that ARIMA models can effectively represent water quality parameters, noting that pH 
typically remains stationary and can be well described using low-order models, which reflects its inherent 
stability over time. In a similar context, Viccione et al. (2023) highlighted the usefulness of ARIMA models in 
water quality forecasting, as they efficiently account for short-term random fluctuations without the need for 
extensive differencing, making them well-suited for stable parameters such as pH. Consequently, the ARIMA 
(0,0,1) model confirms that river pH is generally stable around its mean value of approximately 7.24, with 
only slight short-term variations driven by transient shocks and minimal carryover from past errors. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑐𝑐)  =  7.23544;  𝑀𝑀𝑀𝑀 (1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃₁ =  0.05233. 
Equation: 
𝑌𝑌ₜ =  7.23544 +  𝜀𝜀ₜ +  0.05233𝜀𝜀ₜ₋₁                                     (6) 
 
3.4.2. Calcium – ARIMA (1,0,0) 

The ARIMA (1,0,0) model for Calcium concentration represents a first-order autoregressive process, 
where the current value depends on its long-term mean, the preceding observation, and a random error term. 
Equation 7 shows an intercept of 60.69 mg/L, which reflects the baseline or average Calcium level around 
which the series oscillates. The autoregressive coefficient of 0.25431 means that about 25.4% of the previous 
value contributes to the current observation, indicating moderate persistence in the data. Since the coefficient 
is positive, higher Calcium concentrations in one period tend to produce slightly higher values in the next. 
The model reveals that Calcium concentrations stay relatively steady around 60.69 mg/L, with moderate 
dependence on past levels. Additional short-term variability comes through random shocks that affect the 
system. Previous studies have shown that water quality variables, particularly chemical parameters such as 
Calcium, often exhibit autoregressive patterns. Tizro et al. (2016) demonstrated that ARIMA models effectively 
capture the persistence of chemical water quality indicators, with values depending on past observations. 
Similarly, Katimon et al. (2018) applied ARIMA models to the Johor River Basin and confirmed their suitability 
for stationary water quality parameters influenced by preceding values. More recently, Zafra-Mejía, et al. 
(2024) emphasized the effectiveness of ARIMA models in forecasting geochemical parameters in 
groundwater, noting that such parameters remain stable around long-term means while displaying moderate 
dependence on historical concentrations. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑐𝑐)  =  60.68758;  𝐴𝐴𝐴𝐴 (1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑₁ =  0.25431. 
Equation:  
𝑌𝑌ₜ =  60.68758 +  0.25431𝑌𝑌ₜ₋₁ +  𝜀𝜀ₜ                                     (7) 
 
3.43. Iron (mg/L) – ARIMA (0,0,1) 

The ARIMA (0,0,1) model for Iron concentration describes the series as a first-order moving average 
process, where the current value depends on a constant mean, the present random disturbance, and the effect 
of the previous error term. Equation 8 shows that the intercept of 0.17868 mg/L represents the long-term 
average Iron concentration, while the negative moving average coefficient of –0.41341 indicates that about 
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41% of the previous shock influences the current observation in the opposite direction. When Iron 
concentration runs higher than expected in one period, it tends to push the following value down. When it's 
lower than expected, it tends to pull the next value up. The parameters q=1 confirm that the series stays 
stationary and responds mainly to short-term shocks rather than past values, creating fluctuations around a 
stable mean of roughly 0.18 mg/L. 
Both pH and Iron follow MA (1) processes and stay stable with random short-term variations. Calcium 
behaves differently, following an AR (1) process that shows greater dependence on its own past values and 
moderate persistence around an average of about 61.85 mg/L. This means short-term shocks, such as runoff 
or localized discharges, drive fluctuations while the series remains stationary with no long-term persistence 
(Ayob et al., 2017; Zafra-Mejía et al., 2024). The estimated mean is below the WHO guideline of 0.3 mg/L 
(Annem, 2017), though episodic events may temporarily increase concentrations above safe thresholds 
(Ekström et al., 2016). Compared with calcium, which follows an AR (1) process with stronger dependence on 
past values, both pH and iron follow MA (1) processes, remaining generally stable but sensitive to short-lived 
shocks. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑐𝑐)  =  0.17868;  𝑀𝑀𝑀𝑀 (1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃₁ =  −0.41341. 
Equation: 
𝑌𝑌ₜ =  0.17868 +  𝜀𝜀ₜ −  0.41341𝜀𝜀ₜ₋₁            (8) 

pH & Iron → ARIMA (0,0,1): values were stable, and primarily influenced by short-term random 
shocks (MA process). pH and iron gave a random fluctuation with consistent averages in the forecasts (pH 
~7.23; Iron ~0.152 mg/L), while Calcium concentration depends more on its own past values than on random 
shocks, having autoregressive structure fluctuations forecasts of average ~61.85 mg/L). That predicted a 
sharp cutoff at lag 1, indicating AR (1) was the best fit. 
 
3.5 ARIMA Model Diagnosis 

Table 3 shows the ARIMA model diagnostic analysis for pH, Calcium (mg/L), and Iron (mg/L) 
parameters and it confirms the stability and reliability of the respective models based on the inverse roots of 
their AR and MA components. For pH, the presence of a single MA (1) root with a modulus of 0.15308 
indicates that the ARMA model is invertible, ensuring a stable prediction structure. The Calcium model, 
which includes AR (1), MA (1), and MA (2) components, also shows all root moduli within the unit circle—
0.9928, 0.90018, and 0.46665 respectively—confirming both stationarity and invertibility. This reflects a well-
fitting and stable model capable of accurately capturing the temporal behavior of Calcium levels. Similarly, 
the Iron model includes an MA (1) component with a root modulus of 0.41341, which also lies within the unit 
circle, indicating invertibility. Collectively, the diagnostic results show that all ARIMA models are structurally 
sound, with no roots outside the unit circle, validating their use for reliable forecasting and time series analysis 
of the respective water quality parameters. Similar diagnostics are widely used in time series modelling of 
water quality: Hardiyanti et al. (2020) employed diagnostic checking of ARIMA residuals and root‐moduli in 
their analysis of pH, COD, and BOD, confirming invertibility and stationarity of selected models; Zafra-Mejía 
et al. (2024) in their study of drinking water supply systems likewise report that ensuring all AR and MA roots 
lie within the unit circle is essential to validate model forecasts. These consistent findings uphold the reliability 
of your models for forecasting and trend analysis of water quality indicators. ARIMA model diagnostics rely 
on checking that all AR and MA roots lie inside the unit circle, which ensures stationarity and invertibility—
essential for reliable forecasts (Brockwell & Davis, 2016; Ragavan & Fernandez, 2006). Water-quality studies 
commonly apply this test and often find short-memory MA behaviour in parameters influenced by episodic 
events (Ayob et al.; Hardiyanti, 2020; Zafra-Mejía et al., 2024). While classical ARIMA and seasonal variants 
remain strong baseline models, recent work shows that SARIMAX, transfer-function, and hybrid ARIMA–
machine-learning approaches can outperform them when nonlinear dynamics or external drivers are 
important (Costa et al., 2023; Wang et al., 2024; García-Guerrero et al., 2025). 
For monitoring, iron and pH respond mainly to short-term shocks, so real-time sensors and short-lead 
forecasts are recommended, whereas calcium’s more persistent behavior allows less frequent sampling but 
requires attention to its longer autocorrelation when planning management actions (WHO, 2019). 
 

Table 3: ARIMA Diagnostic – Inverse Roots of AR/MA Polynomials for pH, Calcium, and Iron 
Parameter Component Root(s) Modulus Cycle Model Property 
pH MA (1) -0.15308 0.15308 – ARMA model is invertible 
Calcium (mg/L) AR (1) -0.9928 0.9928 – ARMA model is stationary 
 MA (1) -0.90018 0.90018 – ARMA model is invertible 

MA (2) -0.46665 0.46665 – ARMA model is invertible 
Iron (mg/L) MA (1) -0.41341 0.41341 – ARMA model is invertible 

 



Vanke et al. (2025)               Volume 3, Issue 1: 1-11 

Received: 28-08-2025 / Accepted: 12-09-2025 / Published: 21-10-2025  8 
https://doi.org/10.70118/ujet.2025.0301.01 

No root lies outside the unit circle for all components, indicating that all ARIMA models are stable 
(stationary and/or invertible as applicable). 
 
3.5 ARIMA Model Forecasting 

The Autoregressive Integrated Moving Average (ARIMA) model is a powerful statistical tool commonly 
used for forecasting time series data. It combines autoregressive (AR), differencing (I), and moving average 
(MA) components to capture both short-term fluctuations and long-term patterns in sequential datasets. In 
water quality studies, ARIMA provides reliable forecasts of parameters such as pH, calcium, and iron, offering 
valuable insights for sustainable resource planning and management. 
 
3.5.1 Ph Model forecasting 

The ten-year ARMA forecast for pH (Jan. 2023–Dec. 2032) as shown in Figure 2 projects a relatively stable 
trend with mean predicted pH ~ 7.23, indicating little expected drift in the environmental acidity/alkalinity 
of the River Benue under current conditions. The stability in pH forecasts is supported by analogous studies; 
for example, Hardiyanti et al. (2020) forecast pH using ARIMA for an Indonesian river and likewise found 
forecasted pH values staying near neutral/stable ranges (7.40) over multi-year horizons, suggesting buffering 
capacities in similar freshwater systems. The stability in your forecast accords with findings that in many river 
water quality time series, pH tends to revert and exhibits minimal systematic trend unless impacted by 
external perturbations (e.g. pollution, land use change). Nonetheless, as with others (Hardiyanti et al., 2020), 
you should consider that unexpected changes (anthropogenic discharge, climate shifts) may alter future 
dynamics, so forecasts are best used as baseline expectations rather than guarantees. Comparable stability has 
been documented in rivers with strong natural buffering capacity in Malaysia and Indonesia (Ayob et al., 2017; 
Hardiyanti, 2020), in European catchments (Ragavan & Fernandez, 2006) and in large North American rivers 
(Stets et al., 2015). pH is a key regulator of aquatic chemistry: even modest departures from the recommended 
6.5–8.5 range can increase the solubility and toxicity of metals such as iron and aluminum, alter nutrient 
cycling, and affect drinking-water aesthetics and corrosivity (WHO, 2019; Wang, 2016; Ekström et al., 2016). 
Similar impacts on aquatic life and infrastructure have been highlighted by Saalidong et al. (2022) and García-
Guerrero et al. (2025). This study provides one of the few decade-scale ARMA forecasts for a major West 
African river and explicitly links rigorous ARIMA diagnostics to actionable monitoring guidance, bridging 
statistical modelling and water-resources management. There is need to add exogenous drivers like rainfall 
and discharge using SARIMAX or transfer-function models (Costa et al., 2023; Zafra-Mejía et al., 2024). Hybrid 
ARIMA–machine-learning models are needed to capture nonlinear responses (Wang et al., 2024). Short-lead 
forecasts should be integrated into automated early-warning systems with real-time sensors (Bownik, 2021). 
 

 
Figure 2: Ph ARMA Model forecast for Ten (10) Years 

 
3.5.2 Calcium Model forecasting 

Figure 3 shows a ten-year ARMA forecast for calcium, with an average concentration of about 61.85 mg 
L⁻¹. The model points to regular seasonal ups and downs but no long-term drift. Similar behaviour has been 
observed elsewhere: in Bogotá, Zafra-Mejía et al. (2024) found that calcium and related ions follow a moderate, 
seasonally predictable pattern, and Veerendra et al. (2023) reported comparable cycles in Indian surface waters 
linked to rainfall and agricultural runoff. Long-term studies from Europe and North America also show that 
natural carbonate weathering helps keep calcium levels steady over decades (Neal & Kirchner, 2000; Stets et 
al., 2015). Calcium is more than just a number on a chart: it is a key hardness ion that helps buffer pH, limits 
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the solubility of toxic metals, and affects both aquatic life and water-supply infrastructure. Levels around 60 
mg L⁻¹ fit comfortably within World Health Organization guidelines, providing some protection against pipe 
corrosion—although very high hardness can lead to scaling (WHO, 2019; McGowan et al., 2021). This study 
adds one of the few decade-long ARMA forecasts for a major West African river, giving managers a new 
evidence base for hardness control and treatment planning. For now, calcium levels look likely to stay broadly 
stable while responding to seasonal rainfall and runoff. But forecasts built only from past patterns can miss 
sudden changes from land-use shifts, extreme events, or unmonitored pollution. To keep predictions robust, 
future work should update the models regularly, include external drivers such as rainfall and discharge 
through SARIMAX or transfer-function approaches (Costa et al., 2023; Zafra-Mejía et al., 2024), and test hybrid 
ARIMA–machine-learning models to capture more complex, nonlinear responses (Wang et al., 2024; García-
Guerrero et al., 2025). 
 

 
Figure 3: Calcium (mg/l) ARMA Model forecast for Ten (10) Years  

 
3.5.1 Iron Model forecasting 

Figure 4 shows the ten-year ARMA forecast for dissolved iron, with an average of about 0.15 mg L⁻¹ and 
only small short-term ups and downs. This steady pattern is very similar to what other long-term water-
quality studies have found. For example, in Bogotá’s drinking-water system, Zafra-Mejía et al. (2024) observed 
that iron behaved like a typical trace metal, with much smoother seasonal cycles than more variable indicators 
such as turbidity. Likewise, monitoring at India’s Krishnagiri Reservoir showed that iron levels changed only 
slightly from month to month compared with parameters like chlorophyll-a (Abdul Wahid & Arunbabu, 
2022). Long-term data from North American rivers point to the same explanation: slow geochemical processes 
such as redox cycling and carbonate buffering tend to keep dissolved iron stable over time (Stets et al., 2015). 
Even though the forecasted levels are well below World Health Organization aesthetic guidelines, iron still 
matters for both water treatment and the ecosystem. Sudden spikes often triggered by heavy rains, dredging 
or other disturbances can stain pipes, clog treatment systems and even mobilize other metals (WHO, 2019; Hu 
et al., 2019; Krueger et al., 2020).  

 
Figure 4: Iron (mg/l) ARMA Model forecast for Ten (10) Years 
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This work is one of the first decade-long ARMA forecasts for iron in a major West African river, giving 
water managers a valuable baseline for planning treatment and monitoring. Looking ahead, the models could 
be made more powerful by adding external drivers such as rainfall and river discharge using SARIMAX or 
transfer-function approaches (Costa et al., 2023; Zafra-Mejía et al., 2024), by testing hybrid ARIMA–machine-
learning methods to capture sudden or nonlinear changes (Wang et al., 2024), and by linking short-lead 
forecasts to automated sensor networks for real-time early warning of iron spikes (Bownik, 2021). Regularly 
updating and re-validating the models will also be essential as land use and climate continue to change. 
 
4.0 Conclusion 

This study concludes that ARIMA time-series modelling can be a practical, easy-to-use tool for keeping 
track of the River Benue’s water quality. By analysing ten years of monthly data (2011–2021) on pH, calcium 
and iron, we found simple but reliable models: a moving-average type model (ARIMA 0,0,1) works best for 
pH and iron, while calcium follows a first-order autoregressive model (ARIMA 1,0,0). All three passed the 
usual statistical checks, meaning their forecasts can be trusted. Looking ahead to 2023–2032, the river is 
expected to remain chemically stable: pH should stay close to neutral at about 7.2, calcium will fluctuate 
mildly around 62 mg L⁻¹, and iron will hold near 0.15 mg L⁻¹—comfortably within World Health Organization 
guidelines. In simple terms, pH and iron mainly react to short-term disturbances such as brief runoff events, 
while calcium shows a slightly stronger “memory” of its own past levels. For water managers and local 
authorities, these forecasts offer a solid baseline for planning treatment and monitoring. But it’s important to 
remember that ARIMA models only look at past patterns. Sudden changes from land-use shifts, pollution 
events or climate extremes can quickly upset these trends. To keep forecasts useful, the models should be 
updated regularly and, where possible, improved by including outside drivers like rainfall or river discharge, 
or by blending ARIMA with modern machine-learning methods. Coupled with real-time sensors, such an 
approach can provide early warnings and support sustainable, long-term stewardship of the River Benue’s 
water resources. 
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