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Abstract

This research develops and evaluates a hybridised optimisation approach combining Augmented Grey Wolf Optimiser
(AGWO) and Ant Colony Optimisation (ACO) algorithms for building energy management. The study addresses the
pressing need for energy efficiency in buildings, which account for approximately 40% of global energy consumption.
Using a case study of CWAY Integrated Limited in Abuja, Nigeria, the research compared standalone AGWO,
standalone ACO, Sequential Hybrid, and Average Hybrid models across multiple performance metrics. The ACO
algorithm demonstrated superior performance with a 22.9% reduction in daily energy costs (from 632,250 to
#487,350), followed by AGWO with a 21.0% reduction. Contrary to expectations, the Sequential Hybrid approach
underperformed both standalone algorithms with only a 13.1% cost reduction, while the Average Hybrid achieved a
19.0% reduction. Statistical analysis confirmed significant performance differences between optimisation approaches,
with the Kruskal-Wallis test yielding a p-value of 2.83%107%. Component-wise analysis revealed that all optimisation
approaches prioritised reductions in energy-intensive components while maintaining stable operation for components
with stricter operational constraints. The research demonstrates that metaheuristic optimisation techniques can
achieve significant energy savings in building operations while maintaining operational requirements, with important
implications for sustainable building management practices.

Keywords: Building energy optimisation, Metaheuristic Algorithms, HVAC Optimisation, energy cost reduction,
sustainable buildings.

1.0 Introduction

Buildings constitute one of the principal contributors to global energy consumption and greenhouse gas
emissions, representing a critical domain for sustainable development initiatives. The International Energy
Agency reports that buildings account for approximately 28% of global energy consumption and 20% of
carbon dioxide emissions [1], while broader assessments indicate buildings consume nearly 40% of global
energy and contribute approximately one-third of greenhouse gas emissions [2]. Within the Nigerian context,
the building sector consumes approximately 40% of total energy, with heating, ventilation, and air
conditioning (HVAC) systems representing major energy consumers [3]. This substantial energy footprint
underscores the critical imperative for conservation strategies in buildings, particularly in HVAC
optimization and building envelope design.

Building energy systems comprise various components that consume energy, with HVAC systems
typically accounting for over 50% of total energy consumption [4]. These systems maintain indoor thermal
comfort and air quality by controlling temperature, humidity, and air circulation. Lighting systems also
constitute a significant portion of building energy consumption, especially in commercial buildings, where
energy-efficient lighting solutions such as light-emitting diodes (LEDs) can substantially reduce energy
consumption whilst maintaining adequate lighting levels [5]. Additionally, appliances and electronic devices
contribute to building energy consumption, with energy-efficient equipment offering significant
opportunities for energy reduction [6].

The optimization of energy consumption in buildings presents considerable challenges due to the
complex interactions between various building components and systems. Traditional optimization algorithms
frequently struggle with the non-linearity and multi-objective nature of building energy infrastructure. The
importance of building energy optimization extends beyond immediate cost savings to encompass broader
environmental sustainability goals, enabling mitigation of environmental impacts and contribution to global
climate change mitigation efforts [7]. Moreover, building energy optimization can enhance indoor comfort
and air quality, leading to increased occupant satisfaction and productivity whilst providing positive health
benefits such as reducing respiratory problems and allergies [8].
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Optimization techniques employed in building energy systems can be broadly classified into
deterministic and stochastic optimization approaches. Deterministic optimization techniques utilize
mathematical programming methods such as linear programming, quadratic programming, and mixed-
integer programming [9]. These methods optimize building energy systems with linear or nonlinear objective
functions subject to specific constraints. However, stochastic optimization techniques employ probabilistic
algorithms to identify optimal solutions, including evolutionary algorithms, swarm intelligence-based
algorithms, and other metaheuristic optimization approaches [10]. These algorithms effectively optimize
complex building energy systems with multiple objectives, non-linear constraints, and uncertain input
parameters.

Evolutionary algorithms, particularly genetic algorithms, have been extensively applied in building
energy optimization due to their ability to handle non-linearity and non-convexity of objective functions and
constraints [11]. These algorithms follow principles of natural selection and genetic variation, iteratively
improving potential solutions by selecting the fittest individuals and creating new offspring through
crossover and mutation operations. Swarm intelligence-based optimization algorithms represent another
class of techniques used in building energy systems, inspired by the collective behaviour of social insects such
as ants, bees, and termites [12]. These algorithms are particularly suitable for optimization problems with
large and complex search spaces, with examples including Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC), and Grey Wolf Optimizer (GWO).

The Grey Wolf Optimizer algorithm, introduced by Mirjalili et al. in 2014, is based on the hunting

behaviour of grey wolves in a pack [13]. The algorithm categorizes wolves into three groups —alpha, beta,
and delta —representing the best, second-best, and third-best solutions, respectively. GWO proceeds through
initialization, hunting, and update phases, with wolves' positions updated based on alpha, beta, and delta
solutions. However, the standard GWO algorithm sometimes suffers from premature convergence and may
become trapped in local optima. To address these limitations, researchers have proposed an Augmented Grey
Wolf Optimizer (AGWO), which enhances the exploration and exploitation capabilities of the original GWO
algorithm [14]. AGWO introduces additional mechanisms to improve search diversity and prevent premature
convergence, including strategies that improve exploration and exploitation capabilities, such as adding a
new population of randomly perturbed wolves to increase solution space diversity [15].
GWO offers advantages including fast convergence, good exploration and exploitation capabilities, and
implementation simplicity, making it popular for building energy systems optimization. Several studies have
applied GWO to various building energy systems, with Zhang et al. reporting that GWO outperformed other
optimization algorithms in terms of energy savings and computational efficiency when optimizing building
heating systems [10]. Researchers have explored GWO hybridization with other optimization algorithms to
enhance performance, with Muhsen et al. achieving a 25.8% energy reduction using a hybrid GWO algorithm
to optimize HVAC system energy consumption [16].

Ant Colony Optimization (ACO), first proposed by Dorigo in 1992, is a metaheuristic algorithm based on
ant behaviour that utilizes pheromone trails to guide the search for optimal solutions, mimicking how ants
deposit pheromones during food searches [17]. The pheromone trail represents solution quality, with stronger
trails indicating better solutions. ACO advantages include handling discrete optimization problems,
implementation simplicity, and robustness in finding global optima. However, the algorithm may suffer from
premature convergence if the pheromone update process is not properly balanced [18]. In building energy
optimization, ACO has been applied to various systems including HVAC, lighting, and renewable energy
systems. Chen et al. achieved a 15% energy consumption reduction by applying ACO to optimize building
cooling system performance [19]. ACO has also been combined with other optimization algorithms to
improve performance, with Wang et al. proposing a hybrid optimization algorithm combining ACO with
Differential Evolution to optimize building HVAC system energy consumption, outperforming individual
algorithms in energy savings [20].

The hybridization of metaheuristic algorithms has proven effective for enhancing algorithmic
performance [21]. Combining ACO and GWO presents an opportunity to strengthen their search capabilities
and improve computational effectiveness for energy conservation measures in buildings. Previous studies
have demonstrated the potential of hybrid ACO-GWO algorithms in energy-related optimization problems,
such as in the design of standalone photovoltaic systems for rural electrification [22]. The hybridization of
Augmented Grey Wolf Optimizer and Ant Colony Optimization algorithms represents a promising approach
for achieving better optimization results than individual algorithms, as both algorithms possess
complementary strengths and weaknesses that can be leveraged through hybridization [21]. While AGWO
may suffer from slow or premature convergence for complex optimization problems, it demonstrates strong
global exploration capabilities. Conversely, ACO exhibits excellent local exploitation abilities but may
converge slowly or prematurely for large-scale optimization problems [23].
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Several hybridization methods have been proposed for combining AGWO and ACO algorithms.
Sequential hybridization uses one algorithm's output as input for the other, such as using AGWO output as
ACO input to obtain improved solutions. Parallel hybridization runs both algorithms simultaneously and
combines their solutions at each iteration to leverage different search strategies [24]. Parameter tuning adjusts
algorithm parameters for effective collaboration, such as modifying ACO's pheromone update mechanism to
align with AGWO's solution update mechanism. The hybridization of AGWO and ACO algorithms offers
several advantages for building energy optimization, including overcoming individual algorithm limitations,
reducing premature convergence risk, increasing solution diversity, and reducing search space for faster
convergence and better results [21]. Several studies have demonstrated hybridized AGWO-ACO algorithm
effectiveness in building energy optimization. Wang et al. achieved a 26.3% energy consumption reduction
using a hybridized algorithm based on HAGO-ACO to optimize building HVAC system energy consumption
compared to traditional ACO [12]. Similarly, Liu et al. reduced energy consumption by 20.7% using a HAGO-
ACO algorithm to optimize building cooling system energy consumption compared to traditional ACO [21].

Despite progress in applying hybridized AGWO-ACO algorithms for building energy optimization,
research gaps persist. Most studies focus on standalone ACO or GWO algorithms or their simple
hybridization, overlooking potential benefits of incorporating augmented GWO versions that enhance
exploration and exploitation capabilities. Additionally, literature primarily concentrates on single
hybridization strategies, neglecting alternative approaches like sequential or average hybridization
evaluation. Many studies remain limited to theoretical aspects or simulated scenarios, lacking practical
implementation and evaluation with real-world data and problems [22].

Consequently, this research proposes a hybridized augmented grey wolf optimizer and ant colony
optimization approach (HAGWO-ACO) for building energy management to address these identified
challenges and research gaps. The primary aim is to develop and evaluate a novel HAGWO-ACO algorithm
that combines the global exploration capabilities of AGWO with the local exploitation strengths of ACO,
thereby enhancing algorithmic performance for HVAC systems in buildings. This research investigates the
limitations of standalone ACO and AGWO algorithms in optimizing HVAC systems for energy conservation,
develops the hybrid algorithm to overcome these constraints, and implements it for evaluation through
simulation studies and a practical case study of CWAY Integrated Limited in Abuja, Nigeria. The study
explores two hybridization strategies: sequential hybridization using the best AGWO solution as the initial
ACO solution, and average hybridization taking the average of the best AGWO and ACO solutions.
Performance evaluation encompasses comprehensive comparison with standalone algorithms using metrics
including best solution, best fitness (energy cost), operating hours, energy consumption, and total energy cost,
with results enhanced through visualizations for improved interpretability. The research addresses existing
gaps by integrating augmented GWO versions, evaluating multiple hybridization strategies, demonstrating
practical implementation with real-world data, and providing insights for implementation in the Nigerian
building sector. By investigating this hybridized optimization approach, this research contributes to ongoing
efforts in Nigeria to promote energy efficiency and reduce greenhouse gas emissions in the building sector,
aligning with the country's commitment to sustainable development goals and advancing state-of-the-art
building energy optimization algorithms [23, 24].

2.0 Material and Methods
2.1 Research Design and Data Collection

This research employed a mixed-method experimental design combining simulation techniques with
statistical analysis to evaluate the performance of hybridised optimisation algorithms for building energy
management. The research design framework, illustrated in Figure 1, consisted of four primary phases: data
collection, algorithm implementation, simulation, and performance evaluation.
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Figure 1: Research design framework for hybridised optimisation approach

Data collection was conducted at CWAY Integrated Limited, Abuja, Nigeria, over a 12-month period to
capture seasonal variations in energy consumption patterns. Three categories of data were gathered: daily
energy consumption data, generator operation data, and constraint data. The daily energy consumption data
included information on various energy-consuming components such as boiling machines, air compressors,
filling machines, packaging machines, lighting systems, air conditioning units, computers, printers, and
appliances. For each component, data on power ratings (kW), operating hours, and daily energy consumption
(kWh) were recorded.

Generator operation data comprised information about the facility's occupancy patterns, generator
specifications (power ratings, operating hours, and fuel consumption rates), and energy tariffs. The constraint
data established the minimum and maximum allowable operating hours for each energy-consuming
component based on operational requirements and maintenance schedules. These constraints were essential
for ensuring that the optimised solutions remained practical and implementable within the operational
framework of the facility.

2.2 Objective Formulation
The primary objective of this research was to minimise the total daily energy cost of the facility by
optimally determining the operating hours of various energy-consuming components. The mathematical
formulation of this objective function is represented in Equation 1:
n

Minimizef (x) = Z Gy X X X T e 1

i=1
where n represents the number of energy-consuming components, Ci denotes the energy consumption rate

(or power rating) of component i, x; signifies the operating hours of component i and T is the energy tariff
(cost per unit of energy consumed) [2]
The decision variables in this optimisation problem were the operating hours (xi) for each component, which
were subject to constraints based on minimum and maximum operational requirements. These constraints
were formulated as shown in Equation 2:

by < x; Subjj T=12,,1 )
where lb; and ub; ; represent the minimum and maximum operating hours for component i, respectively.
Additionally, a constraint was imposed on the total energy consumption to ensure that the optimised solution
did not exceed a predetermined threshold. This constraint was expressed as shown in Equation 3:

n
Z Ci X X < Emax .......................................................................... (3)
i=1

where E,,,, the maximum allowable energy consumption for the facility [3].
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2.3 Augmented Grey Wolf Optimiser (AGWO) Model

The Augmented Grey Wolf Optimiser algorithm was implemented based on the hunting hierarchy and
social behaviour of grey wolves, with enhancements to improve exploration and exploitation capabilities. The
AGWO flowchart is presented in Figure 2.

The AGWO algorithm began with random initialisation of a population of search agents (wolves) within
the constrained search space. Each wolf represented a potential solution to the optimisation problem, with its
position corresponding to the operating hours of each energy-consuming component. The fitness of each wolf
was evaluated using the objective function defined in Equation 1.

Initialise the AGWO
parameters

Compute each individual fitness in the
group and assign the best solution

Evaluate the fitness
and update the wolves
position

Calculate factor value
and update iteration

Update best solution

Figure 2: Augmented Grey Wolf Optimiser algorithm flowchart

The algorithm classified the wolves into a hierarchy, with the three best solutions designated as alpha (),
beta (B), and delta (8) wolves. The remaining wolves were categorised as omega (») wolves. In each iteration,
the positions of all wolves were updated based on their relative positions to the alpha, beta, and delta wolves
using the following equations:

D, = |C1 X, —X(t)| ..................................................... 4)

X, =X, — Ay - DDy = |c2-Xﬁ—X(t)| ..................................................... )

XZ=XB—A2-DBD5=|C3-X5—X(1:)| ..................................................... 6)
- - - - > X +X,+X

X3=X5—A3'D5X(t+1)= 1 32 5 N (7)

where X,, X, and X5 represent the positions of the alpha, beta, and delta wolves. X(t) is the position of the
current wolf at iteration t, A4, 4, and A3 are random vectors used for position updates, C;, C,, and C3 are
random vectors used to adjust step sizes Dy, Dg, and Ds denote the distances between the current wolf and the
alpha, beta, and delta wolves [16, 22].

The augmentation of the GWO algorithm involved incorporating an adaptive parameter control

mechanism that dynamically adjusted the exploration and exploitation balance based on the current iteration
and fitness landscape. Additionally, a diversification strategy was implemented to prevent premature
convergence, whereby a portion of the population was randomly reinitialised if the algorithm stagnated for a
predefined number of iterations.
The AGWO algorithm terminated when the maximum number of iterations was reached or when the
improvement in the best solution fell below a specified threshold for a consecutive number of iterations. The
best solution found by the algorithm represented the optimised operating hours for each energy-consuming
component.
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2.4 Ant Colony Optimization (ACO) Model

The Ant Colony Optimization algorithm was implemented based on the foraging behaviour of ant
colonies, where ants deposit pheromone trails to guide other ants towards promising solutions. The ACO
flowchart is presented in Figure 3.

The ACO algorithm began with the initialisation of a pheromone matrix, where each element represented
the desirability of assigning a specific operating hour to a particular energy-consuming component. The initial
pheromone levels were set to a small positive value (7,) to encourage exploration.

In each iteration, a colony of artificial ants constructed solutions by selecting operating hours for each
component based on a probabilistic rule that considered both the pheromone levels and heuristic information.

Initialise Parameters Update Beat Solutie
alpha=1 betas 2, thos ot Store global best if
Anits = 50, Max iterations = improved

1000

Initialize Pheromone
Matrix
tauy = tawy

Local Search
Apply local optimization to
improve solutions

Construct Sclutions Output Best Evaluate Solutions
Each ant builds salution Sobution Return Calculade abjective function
using probability rule optimized for each ant
operating hours

Figure 3: Ant Colony Optimization algorithm flowchart

The probability of selecting operating hour j for component i was calculated using the following equation:
B

_ Ty
DAL
where 7;; represents the pheromone level associated with assigning operating hour j to component i, 1;; is the
heuristic information, which was calculated as the inverse of the energy consumption resulting from the
assignment, a and P are parameters that control the relative influence of pheromone versus heuristic
information and mi is the number of possible operating hours for component i [22]
After all ants constructed their solutions, the objective function value (energy cost) was calculated for each
solution. The pheromone levels were then updated according to the following rule:

Dij

Nants
lez(l—p)'f”+ Z ATZ ...................................................................... (9)
k=1

where p is the pheromone evaporation rate (0 < p < 1), 47;j* is the amount of pheromone deposited by ant k
on the assignment of operating hour j to component I [16]

The pheromone deposit was proportional to the quality of the solution found by each ant, with better solutions
receiving larger deposits:

Ath = {f%' if ant k assigns operating hour j to component ¢ (10)

, otherwise

where Q is a constant representing the total amount of pheromone deposited f_k is the objective function
value (energy cost) of the solution found by ant k [22]

To enhance the performance of the ACO algorithm, a local search procedure was implemented to refine the
solutions found by the ants. This procedure iteratively adjusted the operating hours of components to find
neighbouring solutions with lower energy costs.
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The ACO algorithm terminated when the maximum number of iterations was reached or when the best
solution did not improve for a specified number of consecutive iterations. The best solution found by the
algorithm represented the optimised operating hours for each energy-consuming component.

2.5 Hybridisation Approach and Simulation

Two hybridisation approaches were implemented to combine the strengths of the AGWO and ACO
algorithms: sequential hybridisation and average hybridisation. The sequential hybridisation approach,
illustrated in Figure 4, involved executing the AGWO algorithm first to obtain an initial solution, which was
then used to initialise the pheromone trails for the ACO algorithm.

Initialise Parametera Update Beat Sclutio
alpha=1 betas 2, thos ot Store global best if
Ants = 50, Max iterations = Improved

Initialize Pheromone Update Pheromones
Matrix Apply evaporation and
pheromone deposit

Lecal Search
Apply local optimization to
improve solutions

Construct Sclutions Outputl Best Evaluate Solutions
Each ant builds salution Salution Return Calculate objective function
using probability rule optimized for each ant
operating hours

Figure 4: Sequential hybridisation approach combining AGWO and ACO

In the sequential hybridisation, the AGWO algorithm was executed for a predetermined number of
iterations to identify promising regions in the search space. The best solution found by AGWO was then used
to initialise the pheromone matrix for the ACO algorithm, with higher pheromone levels assigned to
assignments that corresponded to the AGWO solution. This approach leveraged the global exploration
capabilities of AGWO to guide the local exploitation capabilities of ACO, potentially leading to better
solutions.

The average hybridisation approach, illustrated in Figure 5, involved executing both AGWO and ACO
algorithms independently and then combining their solutions by taking the weighted average of the operating
hours specified by each algorithm.

e
Figure 5: Average hybridisation approach combining AGWO and ACO

In the average hybridisation, both AGWO and ACO algorithms were executed for the same number of
iterations, resulting in two separate solutions. These solutions were then combined by calculating the
weighted average of the operating hours for each component:
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hybrid
x

— AGWO ACO
i = Waewo * X + WACO * X ettt ettt ettt (11)

MYbTId s the operating hour of component i in the hybrid solution, x{¢"° is the operating hour of

where x
component i in the AGWO solution, x{:? is the operating hour of component i in the ACO solution and W,y
and w,¢, are weights assigned to the AGWO and ACO solutions, respectively [22]

The weights were determined adaptively based on the relative performance of the two algorithms, with
better-performing algorithms receiving higher weights.

Simulations were conducted using MATLAB R2022a on a computer with an Intel Core i7 processor and
16GB RAM. For each algorithm (AGWO, ACO, sequential hybrid, and average hybrid), 30 independent runs
were performed to account for the stochastic nature of the algorithms. Each run consisted of 1000 iterations
with a population size of 50 for AGWO and 50 ants for ACO. The parameter settings were as follows: a=1, 3
=2,p=0.1for ACO, and a =2 (linearly decreasing to 0) for AGWO.

2.6 Performance Metric and Statistical Analysis

The performance of the optimisation algorithms was evaluated using several metrics: total daily energy
consumption (kWh), total daily energy cost (N), optimised operating hours for each component, and
computational time. The total daily energy consumption was calculated as the sum of the energy consumption
of all components based on their optimised operating hours:

n
Etotal = z Ci X 4 T N (12)
i=1

The total daily energy cost was calculated by multiplying the total energy consumption by the energy

tariff which was based as ¥225 per kWh:
CoStroral = Eroral X T (13)

Statistical analysis was performed to assess the significance of the differences observed between the
different optimisation approaches. The Kruskal-Wallis test, a non-parametric alternative to one-way ANOVA,
was employed to determine whether there were statistically significant differences in the performance metrics
across the different algorithms. This test was chosen because it does not assume normality of the data, making
it suitable for the potentially non-normal distributions of energy consumption and cost data in this study,
unlike parametric tests such as ANOVA which require normality assumptions. The test was conducted with
a significance level of 0.05, and the null hypothesis stated that there was no significant difference between the
algorithms.
Bootstrap confidence intervals were constructed to quantify the uncertainty in the energy cost estimates and
provide a robust comparison between optimisation methods. This method involved resampling the
performance data with replacement to generate 1000 bootstrap samples, from which 95% confidence intervals
were calculated.
Descriptive statistics, including mean, median, standard deviation, and variance, were computed for each
performance metric to summarise the central tendency and dispersion of the results. These statistics provided
insights into the reliability and consistency of the optimisation algorithms.
The convergence behaviour of the algorithms was analysed by plotting the best fitness value against the
iteration number for each algorithm. This analysis provided insights into the rate of improvement and the
ability of the algorithms to escape local optima and find global or near-global optimal solutions.

3.0 Results and Discussion
3.1 Results

Table 1 presents comprehensive optimisation results for the building energy components, comparing pre-
optimisation operating hours and energy consumption with the values obtained from four different
optimisation approaches: AGWO, ACO, Sequential Hybrid, and Average Hybrid. The results demonstrate
significant reductions in operating hours and energy consumption across most components, with varying
patterns of optimisation across the different approaches.

For energy-intensive components such as Boiling Machines, all optimisation approaches achieved
substantial reductions in operating hours, decreasing from the pre-optimisation value of 12 hours to 8, 9, 10,
and 9 hours for AGWO, ACO, Sequential Hybrid, and Average Hybrid approaches, respectively. This
translated to energy consumption reductions ranging from 16.7% to 33.3%, with AGWO achieving the most
significant reduction (from 720 kWh to 480 kWh).

Air Compressors showed similar improvement patterns, with operating hours reduced from the pre-
optimisation value of 16 hours to as low as 8 hours with the ACO approach. The corresponding energy
consumption decreased from 320 kWh to 160 kWh, representing a 50% reduction. Both hybrid approaches
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achieved intermediate reductions, with operating hours of 9 hours and energy consumption of 180 kWh,
demonstrating a balanced optimisation strategy.

Table 1: Optimisation results

Compone Pre- AGWO | ACO Sequen | Averag Pre- AGWO ACO Sequentia | Average
nts Optimisa Daily Daily tial e Optimisat Daily Daily 1 Hybrid Hybrid
tion Operat | Operat | Hybrid | Hybrid | ion Daily Energy Energy Daily Daily
Daily ing ing Daily Daily Energy Consump | Consump Energy Energy
Operatin Hour Hour Operati | Operat | Consump tion tion Consump | Consump
g Hour (h) (h) ng ing tion (kWh) (kWh) tion tion
(h) Hour Hour (kWh) (kWh) (kWh)
(h)
Boiling 12 8 9 10 9 720 480 540 600 540
Machines
Air 16 10 8 9 9 320 200 160 180 180
Compres
sors
Filling 14 14 9 9 12 294 294 189 189 252
Machines
Packagin 14 8 11 11 10 224 128 176 176 160
8
Machines
Factory 16 13 10 11 12 80 65 50 55 60
Floor
LED
Office 10 6 9 10 8 25.6 15 23 26 20
Fluoresce
nt
Factory 12 11 10 13 11 720 660 600 780 660
Floor AC
Office 8 8 8 8 8 320 320 320 320 320
AC
Compute 8 6 8 10 7 36 27 36 45 32
rs
Printers 4 5 5 5 5 9.6 12 12 12 12
Applianc 6 2 6 6 4 60 20 60 60 40
es

Notably, certain components showed different optimisation patterns. For Filling Machines, the AGWO
approach maintained the pre-optimisation operating hours of 14 hours, while ACO and Sequential Hybrid
both reduced the hours to 9, and Average Hybrid to 12 hours. This variance reflects the different exploration
and exploitation capabilities of the algorithms and their sensitivity to the energy consumption characteristics
of each component.

The results also reveal instances where minimal changes were made to operating hours, such as Office
AC, which maintained 8 hours across all optimisation approaches. This consistency likely reflects stringent
operational constraints for this component, where reducing operating hours further would compromise
functionality or comfort levels.

Some components, such as Printers, showed a slight increase in operating hours and energy consumption
across all optimisation approaches, suggesting that redistributing energy consumption from high-power
components to lower-power components can achieve overall system optimisation, even if individual
component consumption increases.

Table 2 presents the total daily energy costs for each optimisation model compared to the pre-optimisation
scenario. The results demonstrate substantial cost savings achieved through all optimisation approaches, with
varying degrees of effectiveness.

Table 2: Model cost performance

Optimisation Model Total Daily Energy Cost (N)
Pre-optimisation Energy Cost 632,250
AGWO 499,720
ACO 487,350
Sequential AGWO-ACO Hybrid 549,680
Average AGWO-ACO Hybrid 512,100
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The pre-optimisation energy cost was ¥N632,250, representing the baseline expenditure before any
optimisation strategies were applied. All optimisation models achieved significant reductions from this
baseline, confirming the effectiveness of metaheuristic approaches for building energy management.

The AGWO model reduced the daily energy cost to 3¥499,720, representing a 21.0% reduction from the pre-
optimisation scenario. This substantial improvement demonstrates AGWO's capability to identify more
energy-efficient operating patterns by leveraging its global exploration capabilities.

The ACO model achieved the most significant cost reduction, lowering the daily energy cost to ¥487,350,

which represents a 22.9% reduction from the pre-optimisation scenario. This superior performance can be
attributed to ACO's strong local exploitation capabilities, which enable it to fine-tune operating hours for
optimal energy efficiency.
The Sequential AGWO-ACO Hybrid model, somewhat surprisingly, showed less improvement than the
standalone algorithms, with a daily energy cost of ¥549,680, representing a 13.1% reduction from the pre-
optimisation scenario. This finding suggests that the sequential hybridisation strategy might not effectively
leverage the strengths of both algorithms in this specific application context.

The Average AGWO-ACO Hybrid model performed better than the Sequential Hybrid, achieving a daily
energy cost of ¥512,100, representing a 19.0% reduction from the pre-optimisation scenario. While not
matching the performance of the standalone ACO model, this hybrid approach demonstrates that averaging
the solutions from different algorithms can produce competitive results.

Figure 6 provides a graphical representation of the optimised operating hours for each component across

the different optimisation approaches, facilitating visual comparison with the pre-optimisation scenario. The
visualisation reveals distinct patterns in how each optimisation model adjusted operating hours for different
components.
A consistent pattern observed across all optimisation models is the significant reduction in operating hours
for energy-intensive components such as Boiling Machines and Air Compressors. This targeted reduction
demonstrates the algorithms' ability to identify and prioritise efficiency improvements for components that
contribute most significantly to overall energy consumption.

The AGWO model showed the most aggressive reduction in operating hours for most components,

particularly for Packaging Machines (reduced from 14 to 8 hours) and Appliances (reduced from 6 to 2 hours).
This approach reflects AGWO's tendency toward exploration of diverse solution spaces, sometimes leading
to more radical adjustments.
The ACO model demonstrates a more balanced approach to operating hour reduction, with moderate
adjustments across most components. This balance reflects ACO's methodical exploration guided by
pheromone trails, allowing it to converge towards solutions that distribute operating hour reductions
effectively across multiple components.

The hybrid approaches show interesting intermediate patterns, with the Sequential Hybrid maintaining
higher operating hours for certain components such as Factory Floor AC (increased to 13 hours) and
Computers (increased to 10 hours). This pattern suggests that the sequential application of algorithms may
sometimes prioritise operational requirements over energy savings for specific components.

Notably, some components, such as Office AC, maintained consistent operating hours across all
optimisation models, indicating strong operational constraints that limited the potential for adjustment.
Conversely, components such as Factory Floor LED showed high variability in optimised operating hours
across different models (ranging from 10 to 13 hours), suggesting greater flexibility for adjustment based on
overall system optimisation.

Figure 7 presents the daily energy consumption for each component, providing a visual comparison of
energy consumption levels before and after optimisation using the different approaches. The visualisation
clearly demonstrates the impact of operating hour adjustments on energy consumption patterns.

The most substantial energy consumption reductions are observed in high-power components such as
Boiling Machines, where consumption decreased from 720 kWh to as low as 480 kWh with the AGWO
approach, representing a 33.3% reduction. Similarly, Factory Floor AC consumption showed significant
variability across optimisation models, ranging from 600 kWh with ACO to 780 kWh with the Sequential
Hybrid approach.

A notable pattern is the consistent reduction in energy consumption for Air Compressors across all
optimisation models, with the ACO approach achieving the most significant reduction (from 320 kWh to 160
kWh). This consistency suggests that all optimisation algorithms identified this component as a prime
candidate for energy efficiency improvements.
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Figure 6: Operating model optimisation results

The visualisation also highlights instances where energy consumption increased for certain components,
such as Printers, where all optimisation models increased consumption from 9.6 kWh to 12 kWh. This targeted
increase in lower-power components while decreasing consumption in higher-power components
demonstrates the algorithms' ability to redistribute energy consumption for overall system optimisation.

Components with relatively lower energy consumption, such as Office Fluorescent lighting and
Computers, showed moderate variations across optimisation models, reflecting their lower priority in overall
energy optimisation strategies. However, even these smaller contributors showed some improvement in most
optimisation scenarios, contributing to the cumulative energy savings.
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Figure 7: Energy consumption optimisation result

Figure 8 provides a clear visual comparison of the total energy costs associated with each optimisation
model compared to the pre-optimisation scenario. The bar chart effectively illustrates the magnitude of cost
savings achieved through the different optimisation approaches.

The visualisation confirms the substantial cost reduction from the pre-optimisation baseline of ¥632,250,
with all optimisation models achieving lower energy costs. The ACO model demonstrates the most significant
cost savings, with a total daily energy cost of ¥487,350, representing a 22.9% reduction from the baseline.
The comparative heights of the bars provide immediate insight into the relative performance of different
optimisation approaches. The Sequential Hybrid model shows the least improvement among the optimisation
approaches, while the standalone ACO model achieves the best performance, closely followed by the AGWO
model and then the Average Hybrid approach.
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The visualisation highlights an interesting pattern where the hybrid approaches did not outperform the
standalone algorithms in terms of cost savings. This observation challenges the initial hypothesis that
hybridisation would consistently lead to improved performance by combining the strengths of different
algorithms. The specific implementation details and parameter settings of the hybridisation strategies may
influence this outcome.

Optmisasn Lodsl

Figure 8: Energy consumption optimisation cost result

Table 3 presents descriptive statistics for each optimisation approach, providing valuable insights into the
central tendencies and dispersions of energy consumption data. These statistics enable a more nuanced
understanding of the optimisation models' performance beyond simple comparisons of total energy cost

Table 3: Descriptive statistics summary

Optimization Approach Mean Median Std Dev Variance
Pre-Optimization 255.38 2240 259.39 67283.69
AGWO 201.91 128.0 216.45 46850.29
ACO 196.91 160.0 206.85 42786.09
Sequential Hybrid 222.09 176.0 252.35 63679.89
Average Hybrid 206.91 160.0 220.67 48694.69

The pre-optimisation scenario shows the highest mean daily energy consumption at 255.38 kWh,

confirming the baseline inefficiencies addressed through optimisation. The standard deviation of 259.39 kWh
and variance of 67,283.69 indicate high variability in energy consumption across different components,
suggesting uneven distribution of energy usage.
The AGWO model reduced the mean energy consumption to 201.91 kWh, representing a 21.0% reduction
from the pre-optimisation mean. The lower standard deviation of 216.45 kWh and variance of 46,850.29
indicate that AGWO not only reduced overall energy consumption but also achieved more balanced energy
distribution across components.

The ACO model achieved the lowest mean energy consumption at 196.91 kWh, a 22.9% reduction from
the pre-optimisation mean. The standard deviation of 206.85 kWh and variance of 42,786.09 are the lowest
among all approaches, suggesting that ACO achieved the most balanced energy distribution while
minimising overall consumption.

The Sequential Hybrid model showed higher variability than the standalone algorithms, with a mean
energy consumption of 222.09 kWh and the highest standard deviation of 252.35 kWh among the optimisation
approaches. This increased variability suggests that the sequential hybridisation process may have introduced
inconsistencies in how energy reductions were distributed across components.

The Average Hybrid approach achieved a mean energy consumption of 206.91 kWh with a standard
deviation of 220.67 kWh. While not matching ACO's performance, this hybrid approach demonstrated a good
balance between energy reduction and distribution, potentially offering a robust compromise solution.

The median values provide additional insight, with the pre-optimisation median of 224.0 kWh reduced
to 128.0 kWh, 160.0 kWh, 176.0 kWh, and 160.0 kWh for AGWO, ACO, Sequential Hybrid, and Average
Hybrid approaches, respectively. These reductions in median values confirm that all optimisation approaches
achieved significant energy savings across the majority of components.

Table 4 presents bootstrap confidence intervals for the energy costs associated with each optimisation
method, providing a robust statistical basis for comparing their performance. These confidence intervals
quantify the uncertainty in energy cost estimates and enable more reliable conclusions about the relative
effectiveness of different optimisation approaches.
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Table 4: Bootstrap confidence intervals

Method Bootstrap Confidence Interval (N)
Pre-Optimization 626,790.89 - 634,105.84
AGWO 496,766.64 - 502,402.99
ACO 485,488.96 - 491,067.33
Sequential Hybrid 546,124.16 - 552,348.16
Average Hybrid 509,745.26 - 516,060.58

The pre-optimisation scenario shows a relatively narrow confidence interval of N626,790.89 to
N634,105.84, indicating consistent high energy costs before optimisation. This narrow interval reflects the
stable but inefficient energy consumption patterns in the unoptimised system.

The AGWO model's confidence interval ranges from ¥N496,766.64 to ¥502,402.99, representing a clear and
statistically significant reduction from the pre-optimisation scenario. The relatively narrow width of this
interval (¥5,636.35) suggests good consistency in the solutions found by the AGWO algorithm across multiple
runs.

The ACO model demonstrates the lowest energy cost confidence interval, ranging from ¥N485,488.96 to
N491,067.33. This interval not only confirms ACO's superior performance but also indicates good reliability,
with a narrow interval width of N5,578.37 suggesting consistent high-quality solutions across different runs.

The Sequential Hybrid model shows a higher confidence interval of 3546,124.16 to 3552,348.16, which
does not overlap with the intervals of the standalone algorithms. This distinct separation confirms that the
Sequential Hybrid consistently underperformed compared to both AGWO and ACO, suggesting fundamental
limitations in this hybridisation strategy for this specific application.

The Average Hybrid approach presents a confidence interval of X509,745.26 to N516,060.58, which is
higher than both standalone algorithms but significantly lower than the Sequential Hybrid. This intermediate
performance suggests that while the averaging process provides benefits over sequential hybridisation, it does
not consistently outperform the standalone algorithms in this context.

The non-overlapping confidence intervals between different optimisation methods provide strong
statistical evidence for their performance differences. The Kruskal-Wallis test result, with a p-value of
2.83x107%, further confirms that these differences are statistically significant, supporting the conclusion that
the choice of optimisation algorithm substantially impacts energy cost outcomes.

3.2 Discussion and Comparative Analysis

The comprehensive results obtained from implementing the AGWO, ACO, and hybrid algorithms for
building energy optimisation reveal several key insights into the effectiveness and applicability of these
approaches. The performance differences between algorithms can be attributed to their inherent
characteristics and how these characteristics align with the specific challenges of building energy
optimisation.

The ACO algorithm demonstrated superior performance in minimising energy costs, achieving a 22.9%
reduction from the pre-optimisation scenario. This effectiveness can be attributed to ACO's strong local
exploitation capabilities, which enable precise adjustment of operating hours for individual components. The
pheromone-guided search mechanism of ACO facilitates efficient exploration of the solution space, allowing
the algorithm to identify and refine high-quality solutions. The consistent performance of ACO across
multiple runs, as evidenced by the narrow bootstrap confidence interval, further confirms its reliability for
building energy optimisation applications.

The AGWO algorithm also achieved substantial energy cost reductions of 21.0% from the pre-
optimisation scenario. AGWO's hierarchical structure and position update mechanisms provide effective
global exploration capabilities, allowing it to identify promising regions in the solution space. However,
AGWO's tendency to converge to local optima, as suggested by the fitness curve plateauing, may have limited
its ability to find the absolute optimal solution. Nevertheless, AGWO's performance remains competitive,
particularly for applications requiring rapid identification of good solutions.

The superior performance of standalone algorithms over hybrid approaches can be attributed to
algorithmic interference and parameter optimization conflicts. The Sequential Hybrid approach constrained
ACO's natural exploration capabilities by initializing pheromone trails with AGWO solutions, effectively
trapping the algorithm in predetermined search regions rather than allowing its characteristic global
exploration. Similarly, the Average Hybrid approach suffered from the mathematical limitation that
averaging two independently optimal solutions does not guarantee optimality, often producing compromise
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solutions that fall between optimal regions discovered by each algorithm. Additionally, both hybrid
approaches introduced computational complexity and parameter balancing challenges without proportional
benefits, suggesting that the building energy optimization problem structure favours single, well-tuned
metaheuristic approaches over hybrid complexity

The hybridisation approaches produced mixed results, challenging the initial hypothesis that combining
the strengths of AGWO and ACO would consistently lead to improved performance. The Sequential Hybrid
approach underperformed both standalone algorithms, achieving only a 13.1% reduction in energy costs. This
unexpected outcome suggests that sequential application of algorithms may not effectively leverage their
complementary strengths in this context. The initialisation of ACO with AGWO solutions may have restricted
ACO's exploration capabilities, limiting its ability to discover novel high-quality solutions.

Conversely, the Average Hybrid approach demonstrated more promising results, achieving a 19.0%
reduction in energy costs. While not outperforming the standalone algorithms, this approach offers a balanced
compromise that benefits from both AGWO's global exploration and ACO's local exploitation. The fitness
results show that the Average Hybrid achieved the lowest best fitness value of 22,474 kWh, suggesting that
in certain instances, the averaging process can discover solutions that neither standalone algorithm could find
independently.

The component-wise analysis reveals interesting patterns in how different algorithms optimised the

building energy system. All algorithms prioritised reductions in energy-intensive components, such as Boiling
Machines and Air Compressors, while maintaining more stable operating hours for components with stricter
operational constraints, such as Office AC. This selective optimisation demonstrates the algorithms' ability to
identify and target the most significant contributors to energy consumption, maximising efficiency
improvements within operational constraints.
The statistical analysis provides strong evidence for the performance differences between optimisation
approaches. The Kruskal-Wallis test result confirms that these differences are statistically significant, with a
p-value of 2.83x107* decisively rejecting the null hypothesis of equal performance. The non-overlapping
bootstrap confidence intervals further support this conclusion, providing a robust statistical basis for
comparing the effectiveness of different optimisation strategies.

When compared with findings from related studies, the results align with previous research on the

application of metaheuristic algorithms to building energy optimisation. The performance improvements
achieved in this study, ranging from 13.1% to 22.9% energy cost reductions, are comparable to those reported
in the literature, such as the 26.3% reduction achieved by Guo et al. (2021) using a hybrid AGWO-ACO
algorithm for HVAC system optimisation.
However, this study contributes several unique insights. First, it demonstrates that hybrid approaches do not
universally outperform standalone algorithms, highlighting the importance of carefully designing
hybridisation strategies for specific application contexts. Second, it establishes the effectiveness of the Average
Hybrid approach as a robust compromise solution, potentially offering greater reliability across different
problem instances. Finally, it provides comprehensive statistical validation of performance differences
between optimisation approaches, addressing a gap in the existing literature.

The findings of this study have significant implications for practical applications in building energy
management. The demonstrated energy cost reductions translate to substantial financial savings for building
operators, while also contributing to environmental sustainability through reduced energy consumption and
associated greenhouse gas emissions. The optimised operating schedules generated by these algorithms can
be readily implemented in building automation systems, providing a practical pathway for realising these
benefits in real-world settings.

4.0 Conclusion, Recommendation and Limitation of the Research
4.1 Conclusion

This research has successfully developed and evaluated a hybridised approach combining Augmented
Grey Wolf Optimiser (AGWO) and Ant Colony Optimisation (ACO) algorithms for building energy
management. The study demonstrates that metaheuristic optimisation techniques can achieve significant
energy savings and cost reductions in building operations while maintaining operational requirements.

The comparative analysis of standalone AGWO, standalone ACO, Sequential Hybrid, and Average
Hybrid models revealed distinctive performance characteristics for each approach. The ACO algorithm
demonstrated superior performance, achieving a 22.9% reduction in daily energy costs from ¥632,250 to
N487,350. This remarkable performance can be attributed to ACO's strong local exploitation capabilities,
which enable efficient fine-tuning of operating hours for individual components. The AGWO algorithm also
performed admirably, achieving a 21.0% cost reduction to N499,720, leveraging its global exploration
strengths to identify promising regions in the solution space.
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The hybridisation approaches produced mixed results that challenge conventional assumptions about
algorithm combination. The Sequential Hybrid approach, which used AGWO solutions to initialise ACO,
achieved only a 13.1% cost reduction to 3¥549,680, underperforming both standalone algorithms. This finding
suggests that sequential hybridisation may sometimes restrict exploration capabilities rather than enhance
them. Conversely, the Average Hybrid approach demonstrated more promising results with a 19.0% cost
reduction to ¥512,100, indicating that averaging solutions from different algorithms can sometimes discover
balanced compromises that leverage complementary algorithmic strengths.

Statistical analysis confirmed the significance of performance differences between optimisation
approaches. The Kruskal-Wallis test yielded a p-value of 2.83x107*¢, providing strong evidence against the
null hypothesis of equal performance. The bootstrap confidence intervals further corroborated these findings,
with non-overlapping intervals between different optimisation methods.

Component-wise analysis revealed that all optimisation approaches prioritised reductions in energy-
intensive components while maintaining stable operating hours for components with stricter operational
constraints. This selective optimisation demonstrates the algorithms' ability to identify and target the most
significant contributors to energy consumption, maximising efficiency improvements within practical
operational boundaries.

The proposed hybridised optimisation approach offers a promising solution for building energy
management, with potential applications in diverse building types. The implementation of optimised
operating schedules generated by these algorithms in building automation systems presents a practical
pathway to realising substantial energy savings and cost reductions while contributing to environmental
sustainability through reduced greenhouse gas emissions.

4.2 Recommendations

Based on the findings of this research, several recommendations are proposed for implementing energy
optimisation strategies in buildings and for advancing research in this domain:

For building managers and energy practitioners, implementation of energy monitoring systems is

essential to establish accurate baseline consumption profiles before optimisation. These systems should collect
detailed component-level consumption data to enable precise targeting of energy-saving measures. The ACO
algorithm is recommended as the primary optimisation approach for building energy management
applications due to its superior performance and consistency in finding high-quality solutions. However,
practitioners should consider context-specific factors when selecting optimisation approaches, as performance
may vary across different building types and operational constraints.
A phased implementation strategy is advisable, beginning with optimisation of high-consumption
components such as HVAC systems and industrial machinery, which demonstrated the greatest energy-
saving potential in this study. Regular recalibration of optimisation models is necessary to adapt to changing
operational requirements, seasonal variations, and equipment modifications. Integration of optimised
operating schedules with building automation systems will enable automated implementation and
continuous monitoring of energy-saving measures.

For researchers and algorithm developers, exploration of advanced hybridisation strategies beyond the
sequential and average approaches examined in this study is recommended. Alternative hybridisation
frameworks, such as cooperative and adaptive hybridisation, may yield improved performance. The
incorporation of additional constraints related to occupant comfort, equipment degradation, and maintenance
schedules into the optimisation framework would enhance practical applicability. Development of multi-
objective optimisation approaches that simultaneously consider energy consumption, cost, greenhouse gas
emissions, and occupant comfort would provide more comprehensive solutions for sustainable building
management.

Policy makers should develop incentive programmes that encourage building owners to implement
energy optimisation technologies, particularly in energy-intensive commercial and industrial facilities.
Establishment of certification standards for buildings that implement advanced energy optimisation strategies
would promote wider adoption of these technologies. Investment in training programmes for building
managers and technical staff on the implementation and maintenance of energy optimisation systems is
essential for sustainable energy management practices.

4.3 Limitation of the Research

While this research has made significant contributions to building energy optimisation, several limitations
should be acknowledged to contextualise the findings and guide future research directions.
The study focused on a specific case study of CWAY Integrated Limited in Abuja, Nigeria, which may limit
the generalisability of results to other building types, climatic conditions, or operational contexts. Different
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building typologies, such as residential, educational, or healthcare facilities, may exhibit distinct energy
consumption patterns and optimisation potential. The optimisation framework primarily targeted the
operating hours of energy-consuming components without considering other potential optimisation variables
such as temperature setpoints, fan speeds, or lighting intensity levels. This simplified approach, while
effective, may not capture the full complexity of building energy systems.

The research assumed static operational constraints and did not account for dynamic variations in
building use patterns, occupancy levels, or seasonal changes that might affect optimal operating schedules.
In real-world applications, these dynamic factors can significantly influence energy consumption patterns and
optimal operating strategies. The economic analysis focused solely on energy cost reductions without
considering implementation costs, maintenance expenses, or potential impacts on equipment lifespan
resulting from modified operating schedules. A comprehensive cost-benefit analysis would provide a more
complete assessment of the economic viability of the proposed optimisation approaches.

The optimisation models were evaluated using simulation data rather than through practical
implementation and measurement of actual energy savings in the physical building. While simulation
provides valuable insights, real-world implementation may encounter challenges and constraints not
captured in the simulation environment. The hybridisation strategies employed in this study represent only
two possible approaches to combining AGWO and ACO algorithms. Alternative hybridisation frameworks
might yield different or potentially superior results.

Environmental impact assessment was limited to indirect implications of energy savings without
quantitative analysis of greenhouse gas emission reductions or other environmental benefits. The study did
not explore potential interactions between optimised building operation and renewable energy integration,
which represents an increasingly important aspect of sustainable building energy management.

These limitations present opportunities for future research to expand upon the findings of this study and
address these gaps through more comprehensive and diverse investigations of building energy optimisation
strategies.
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