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Abstract 
SQL injection (SQLi) attacks are one of the major threats to web application security, especially on e-commerce 
platforms. These attacks exploits the weaknesses in user input which enables attackers to have access and manipulate 
database queries to compromise data integrity. This study aims to develop an automated SQL injection detection 
system using Neural Networks to improve on the security of web applications. A labeled dataset of SQL injection 
patterns was created to train three machine learning models namely: Naive Bayes, Random Forest, and Deep Neural 
Network. The models evaluation was done using accuracy, precision, specificity, and F1 score. The results shows that 
the Neural Network model outperformed the two others by achieving an accuracy of 99.1%, a precision of 94.2%, a 
specificity of 98.1%, and a F1 score of 0.961. These results shows that Neural Networks is efficient in detecting SQL 
injection attacks. Finally, this study provides a comparative insights to earlier research by exploring different potential 
deployment scenarios, and identifies avenues for future work. 
 
Keywords— SQL Injection, Web Application Security, Neural Networks, Machine Learning, Deep Learning, E-
commerce Security. 

 
1.0 Introduction  

The internet and web applications plays an important role in modern business operations, many 
organizations rely on them to manage their sensitive data and transactions. E-commerce platforms stores 
valuable user information such as usernames, passwords, and banking details. The most essential of these 
systems are relational databases which operates through Structured Query Language (SQL). These 
weaknesses are common in SQL and web applications are exploited by malicious actors to manipulate 
confidential information that poses serious threats to businesses (Farooq, 2021). 

One of the most common threats is the SQL Injection (SQLi) which enable attackers to bypass the 
authentication process, retrieve sensitive data, and compromise entire systems. SQLi is ranked among the top 
ten web security threats in the Open Web Application Security Project (OWASP) list for over a decade. High-
profile attacks like the 2002 attack on Guess.com which highlights the devastating impact of such breaches. 
Also, the recent statistics from Statista (2020) reveals an average of over 953,000 blocked web attacks daily 
which underscores the growing scale of this problem. SQL injection attackers injects malicious SQL code into 
the input fields to manipulate the backend queries and executes arbitrary commands. These attacks 
compromise data integrity, violate user privacy, and lead to regulatory penalties. Despite the deployment of 
traditional security measures which are the static and dynamic analysis, rule-based filtering, and blacklisting, 
these techniques still fall short due to evolving methods of attacks and also the emergence of novel payloads 
(Rankothge et al., 2020). 

Some progress has been made using machine learning but there exist challenges such as manual feature 
extraction, overfitting, and poor generalization. Conventional models has failed to exploit the syntax and 
context of SQL queries. There is also a need for an automated solutions that is capable of learning complex 
patterns and adapting to emerging new threats (Singh et al., 2016). This study proposes the use of deep neural 
networks (DNNs) for automated SQL injection detection in e-commerce web applications by leveraging on 
the strengths of deep learning and its capacity for automatic feature extraction and high accuracy. 
 
2.0 Background and Related Work 

The combination of detection and prevention techniques are required to reduce SQL injection (SQLi) 
attacks in modern web applications. These approaches ranges from traditional rule-based mechanisms to 
advanced machine learning and neural network-based models. This section outlines some of the methods 
commonly used in the field. 
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2.1 Traditional SQL Injection Detection Methods 
Early methods of detecting SQLi attacks relied heavily on signature-based and rule-based systems. Tools 

like Snort and Web Application Firewalls (WAFs) inspect the network traffic and compare it against all ready 
defined patterns or rules (Inyong et al. 2012). These systems are effective against known form of attack vectors 
but they find it difficult with obfuscated or zero-day SQLi variants thereby exhibiting poor adaptability and 
high false positive/negative rates. 

Regular expression matching and input sanitization are among the primary preventive techniques 
(Halfond, et al. 2006). These methods require constant updates and are sometimes bypassed by polymorphic 
or encoded SQL payloads. 
 
2.2 Machine Learning-Based Approaches 

Researchers have introduced several machine learning (ML) models for SQLi detection to overcome the 
problems of static rule-based systems. ML models like Support Vector Machines (SVMs), Decision Trees, 
Random Forests, and Naïve Bayes have demonstrated improved generalization and adaptability (Hasan et al. 
2019). 

Sheykhkanloo (2017) applied decision trees and achieved significant accuracy in SQLi queries 
identification from a labeled dataset. ML models leverage features such as query length, character frequency, 
presence of SQL keywords, and entropy values. The performance of ML approaches depends on the quality 
of feature engineering and may weaken when faced with novel or slightly modified attacks. 
 
2.3 Neural Network-Based Detection 

Deep learning models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) 
networks, and Convolutional Neural Networks (CNNs), have gained traction in SQLi detection due to their 
ability to automatically learn hierarchical patterns from raw input data. 

Dasari et al. (2025) applied VAE, CWGAN-GP, and U-Net for synthetic SQL query generation, enhancing 
detection accuracy and adaptability, though training was resource-intensive. Arasteh et al. (2024) used binary 
GWO for feature selection with traditional ML, improving SQLi detection accuracy but with high 
computational cost. 

Zhang et al. (2019) proposed an LSTM-based model that analyzes SQL queries as sequential data by 
capturing contextual dependencies successfully between tokens. Their model performed better than the 
traditional ML classifiers in detecting both known and obfuscated attacks. 

Alwan et al. (2020) developed a CNN-based classifier that treats SQL queries as sequences of characters 
by enabling automatic feature extraction without domain-specific knowledge. These approaches reduced false 
positives while still maintaining high detection accuracy. 

The challenges of Neural network models is that it requires a large annotated datasets and are often 
viewed as black-box systems thereby making interpretation and real-time deployment more complex. 
Therefore, hybrid approach which combines ML and DL have been proposed to balance interpretability and 
performance (Tian et al., 2020). 
 
2.4 Comparative Analysis 

Most of the comparative studies reveals that deep learning-based models performed better traditional 
and machine learning-based models in SQLi detection tasks. The advantages is in their ability to learn 
complex, nonlinear relationships without manual feature engineering. However, issues such as training cost, 
model interpretability, and data imbalance still need to be addressed. 

Furthermore, research has explored adversarial SQLi inputs that can bypass deep learning models, 
prompting the integration of adversarial training and explainable AI (XAI) techniques to improve robustness 
and transparency (Alenezi et al., 2021). 
 
2.5 Research Gap and Motivation 

Despite the various progress made in the detection of SQLi, a significant gap exists in creating scalable, 
real-time, and explainable neural network-based models which are personalized to evolving web applications 
in the e-commerce sector. Most of the existing models are not optimized for speed and their evaluations are 
done on an outdated or synthetically generated datasets. This paper aims to bridge this gap by proposing a 
robust deep learning-based detection framework which leverage on real-world SQLi datasets thereby 
focusing on both accuracy and deployment feasibility. 
 
3.0 Methodology 

This study proposes a deep learning-based framework for the detection of SQL Injection Attacks (SQLIAs) 
in web applications by leveraging the neural networks and a well-structured feature engineering. The main 
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aim of the detection system is to differentiate between destructive SQL injection statements and benign, non-
malicious statements which includes both ordinary SQL commands and general user input text. The 
framework is structured to automate the classification process by moving away from traditional manual rule 
design by employing a novel string kernel approach that transforms input queries into high-dimensional 
mathematical representations suitable for machine learning models. The overall architecture of machine 
leraning framework is illustrated in Figure 1. 
 

 
Figure 1: Machine Learning Framework of Detecting SQL Injection Attacks 

 
The dataset used in this study was gotten from Kaggle which is an open source machine learning 

repository. It comprises of 30,919 data entries that meets the requirements of this research. Each SQL query is 
first passed through a tokenizer that convert the input into tokens to represents the relevant features. These 
tokens are labeled as either malicious or non-malicious and subsequently fed into the classifier for final 
classification. This design aims to identify and mitigate queries that could bypass authentication, alter, or 
delete the underlying database. 

The data is prepared for model training by executing a comprehensive feature engineering phase 
which includes feature extraction and feature selection. The "Blank Separation Method" was employed to 
extract terms based on spaces and to ensure a granular view of query components. The SQL injection 
statements were examined for tokens and keywords such as select, insert, drop, union, and symbols like ;, --, 
and =, which are frequently used to manipulate SQL queries. 

Data preparation played an important role to ensure model accuracy and generalization. It handled 
missing values, data cleansing, normalization, and noise reduction. Noisy data were smoothed and outliers 
were removed to prevent overfitting. Domain knowledge was used to identify inconsistencies within the 
dataset while scatter plots were used to explore non-linear relationships. The data preprocessing phase are 
automatic feature extraction, normalization, and segmentation. Tokenization was done using the word-pause 
method which followed by filtering via the TF-IDF algorithm to retain only significant terms. Tokens with 
over 80% frequency or fewer than two occurrences were excluded as they provided little to no discriminatory 
power for classification. 

Three regularization like the Dropout, data regularization (L1 or L2), and Early Stopping was 
implemented to improve the robustness of the model and also to reduce the likelihood of overfitting. Dropout 
deactivates neurons during training forcing the model to generalize better. The neural network contains three 
hidden layers where neurons were selectively dropped during training with specified probabilities and 
improved model generalization. During the test phase, all neuron connections are returned to increase 
performance. Early Stopping was used to terminate training when the validation loss ceased to prevent over-
training. Figure 2 shows the network architecture for the neural network. 
 

 
Figure 2: Network Architecture for the Neural Network Component of the Model 

 
Since SQLIA detection is just a binary classification problem, the classification task was done by deep 

neural network and the dataset was labeled such that SQL injection queries were marked as 1 (malicious) and 
non-SQL injection queries marked as 0 (non-malicious). Non-malicious queries included both benign SQL and 
non-SQL text statements. The neural network architecture used in the study contains multiple hidden layers 
with each layer transforming the input data through weighted computations and bias adjustments. Rectified 
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Linear Unit (ReLU) function was used to handle the activation and it was chosen for its computational 
efficiency and ability to handle non-linear transformations. Model training involved forward propagation and 
back propagation using the Adam optimization algorithm.  
 

 
Figure 3: Components of the proposed neural network-based model for detection and classification of SQLi 

attacks 
 

The performance of the proposed model was evaluated using metrics such as Accuracy, Precision, 
Recall, F1-Score, and the ROC curve. The confusion matrix checked the model efficiency in terms of true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Accuracy and precision were 
particularly emphasized, as they directly reflect the model’s ability to correctly classify both SQL injection and 
benign queries. The ROC curve further helped in assessing the model's discriminative power across different 
threshold settings. 

All algorithms were implemented using Python with the support of Keras and TensorFlow libraries. 
Development was carried out by Google Colab, and online Jupyter Notebook environment. The 
computational hardware used included a system with an Intel Core i7-9900HQ CPU and 16GB of RAM, 
providing sufficient processing power for training deep neural networks. The summary table for the 
methodology is shown in Table 1. 
 
 

Table 1: Summary table for methodology 
Stage Method/Technique 

Dataset Collection SQLi dataset from Kaggle 
Data Preparation Data cleaning, handling missing values, noise smoothing, normalization 

Feature Engineering Blank Separation Method, feature selection 
Data Preprocessing Tokenization (Word Pause), TF-IDF, filtering rare/common tokens 
Model Architecture Deep Neural Network (3 hidden layers, ReLU activation) 

Overfitting Prevention Dropout, L1/L2 Regularization, Early Stopping 
Optimizer Adam (Adaptive Moment Estimation) 

Training Algorithm Backpropagation 
Classification Binary classification (SQLi = 1, Non-SQLi = 0) 

Evaluation Metrics Accuracy, Precision, Recall, F1-Score, ROC Curve, Confusion Matrix 
Development Tools Python, TensorFlow, Keras, Google Colab, Jupyter Notebook 

 
4.0 Evaluation Metrics 

The proposed SQL injection detection model was evaluated using several standard classification metrics. 
The metrics are Accuracy, Precision, Recall, F1-Score, and the Receiver Operating Characteristic (ROC) Curve. 
The confusion matrix was used as the primary tool to outline the different combinations of predicted and 
actual classification results. The confusion matrix categorized the predictions into True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN). True Positives are the malicious SQL injection 
statements that were correctly identified, while True Negatives are the non-malicious statements that were 
accurately classified. False Positives occurs when normal SQL statements are incorrectly labeled as malicious, 
and False Negatives are malicious statements misclassified as benign. 

Accuracy which is one of the key performance metrics is defined as the ratio of correctly classified instances 
(TP and TN) to the total number of instances. Precision measured the proportion of correctly predicted 
positive observations to the total predicted positives. Recall evaluated the model’s ability to identify actual 
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malicious injections correctly. The F1-Score provided a balanced measure of a model’s performance when 
there is an imbalance between classes. 

The ROC Curve assessed the trade-off between the True Positive Rate and the False Positive Rate at various 
threshold settings. A model with a ROC value closer to 1 is considered ideal, while values near 0 indicate poor 
performance. These metrics collectively provided a comprehensive view of the classifier's effectiveness. A 
higher proportion of True Positives and True Negatives in the confusion matrix leads to improved Accuracy, 
Precision, Recall, and F1-Score values which are indicative of robust classification performance. 
 
5.0 Experimental Results 

This study investigates the effectiveness of three machine learning models which are Naïve Bayes, Random 
Forest, and Neural Networks for the detection of SQL injection attacks using a dataset that contained 30,919 
labeled SQL queries. The performance of each model was evaluated using four key metrics: accuracy, 
precision, specificity, and F1 score, providing a comprehensive understanding of each model’s strengths and 
limitations. The dataset overview is shown in Figure 4. 
 

 
Figure 4: Dataset 

 
The Naïve Bayes model achieved an accuracy of 82% which identifies a successful large portion of 

legitimate and malicious queries. However, its precision was 68% that indicates a relatively higher rate of false 
positives where benign queries were mistakenly flagged as attacks. While the model’s specificity was 72% 
which shows moderate effectiveness in distinguishing safe queries, the F1 score of 0.805 revealed a balance 
between identifying threats and avoiding false alarms. Despite its simplicity and speed, the performance 
suggests that Naïve Bayes is not ideal for real-time security systems that require higher accuracy and fewer 
false positives. The SQL Injection Payload Categories is shown in Figure 5. 
 

 
Figure 5: Bar chart of SQL Injection Payload Categories 

 
Interaction refers to how a user’s input and a web application's response are exchanged which reveals 

malicious behavior like SQL injection. Detection systems monitor these interactions for abnormal patterns 
such as unexpected SQL keywords or database error messages. Figures 6 and 7 illustrates the request 
sequences flagged as benign or malicious. To improve detection, feature engineering was used to refine data, 
and data augmentation was applied to handle the high variability of input queries thereby enhancing the 
model's ability to generalize. 
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Figure 6: The hexbin plot 

 

 
Figure 7: The correlation heatmap 

 
In comparison, the Random Forest model demonstrated stronger performance with an accuracy of 

91.1%. It classified more instances correctly than Naïve Bayes and improved in specificity (82.1%) that suggest 
a better ability to recognize legitimate queries and reduce false alerts. However, its precision was at 74.3% 
which indicates that there is a need for improvement to minimize misclassifications. The model’s F1 score of 
0.871 reflects a more robust and reliable detection capability thereby making it a better option for deployment 
in more demanding security environments. 
 

Table 2: Model Performance Comparison 
 Accuracy Precision  Specificity Fi Score  

Naïve Bayes  0.820 0.680 0.720 0.805 
Random Forest 0.911 0.743 0.821 0.871 

Neural Network 0.991 0.942 98.1 0.961 
 

The Neural Network model is the most effective among the three achieving an accuracy of 99.1% and 
a precision of (94.2%) which confirmed that the majority of the flagged queries were actually malicious. The 
specificity of 98.1% confirmed its ability to correctly classify legitimate traffic thereby reducing the chances of 
disruptions caused by false alarms. Additionally, the model achieved an F1 score of 0.961 which indicates a 
strong balance between precision and recall. The training of the model was efficient, taking only 0.4 seconds 
over 20 epochs. The neural network architecture was composed of three dense layers with 128, 64, and 1 
neuron respectively by using batch normalization and dropout layers to enhance generalization and mitigate 
overfitting. A learning rate of 0.001 was optimized through hyperparameter tuning. 
 

Table 3: Comparison with previous work 
 Accuracy Fi Score  

This Study  0.991 0.961 
Tang et al. (2020) 0.99 0.97 
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The neural network's superiority is validated through a comparative analysis with related work by Tang 
et al. (2020), whose model achieved a similar accuracy (0.99) but a slightly lower F1 score (0.97). This 
comparison highlight the effectiveness of the proposed neural network approach in achieving a better balance 
between precision and recall. These results are also consistent with findings from Falor et al. (2021) and Lu et 
al. (2021) that demonstrated high accuracy in SQL injection detection using Convolutional Neural Networks 
(CNNs). While other studies, such as Triloka et al. (2022), reported even higher accuracy using SVMs, the 
current neural network model offers an excellent trade-off between performance and computational 
efficiency, which is essential for real-time intrusion detection. 
 
6.0 Discussion 

The aim of this study was to develop a machine learning-driven model to detect and prevent SQL injection 
(SQLi) attacks targeting e-commerce web applications. The research aimed to identify common SQLi 
vulnerabilities, build a labeled dataset of attack patterns, develop deep neural network models with 
overfitting reduction techniques, and compare their performance against existing approaches. The study 
evaluated three machine learning classifiers which are Naïve Bayes, Random Forest, and Neural Networks, 
using four performance metrics of accuracy, precision, specificity, and F1 score. 

The Neural Network has the best performance by achieving an accuracy of 99.1%, precision of 94.2%, 
specificity of 98.1%, and an F1 score of 0.961. These metrics suggest that the model was able to classify almost 
all test queries correctly and also maintain a low rate of false positives and false negatives. The low training 
loss of 0.027 also confirms the model's effective learning without significant overfitting. 

The advantage of the Neural Network model was evident when compared to Naïve Bayes and Random 
Forest classifiers. Random Forest performed well with accuracy of 91.1% and F1 score of 0.871, Naïve Bayes 
has an accuracy of 82% and lower precision. This supports the understanding that simpler probabilistic 
models like Naïve Bayes struggles to capture complex query structures in SQLi detection tasks. Moreover, the 
findings aligned with the results of Adebiyi et al. (2021), who also reported moderate performance for Naïve 
Bayes in similar contexts. 

Comparative analysis with previous work validates the robustness of the proposed model. For instance, 
the model by Tang et al. (2020) achieved a similar accuracy of 99% and an F1 score of 0.97. The Neural Network 
model in this study achieved slightly higher F1 score of 0.961 which indicates a better balance between 
precision and recall. This enhancement could be attributed to the preprocessing strategies and regularization 
techniques used to improve generalization. 

This study significantly contributes to the body of knowledge and supports the application of neural 
networks for SQL injection detection. The model's high accuracy, strong precision, and superior specificity 
confirm its utility in real-time intrusion detection systems. Nevertheless, the research is not without 
limitations. Recall data was not explicitly reported, and the dataset, while comprehensive, may benefit from 
further diversification. Future work should explore the generalizability of the model across larger and more 
heterogeneous datasets and examine the potential of hybrid detection mechanisms that combines machine 
learning with simulation and runtime techniques for holistic security solutions. 
 
7.0 Conclusion and Future Work 

SQL injection attacks continue to pose a significant threat to web applications, particularly in the e-
commerce sector, where the consequences of successful intrusions can be severe. This study demonstrated the 
effectiveness of Neural Networks in detecting and mitigating such threats by developing a deep learning 
model that significantly outperformed traditional machine learning methods like Naive Bayes and Random 
Forest. With a near-perfect accuracy of 99.1%, high precision (94.2%), and specificity (98.1%), the Neural 
Network model showed a strong ability to distinguish malicious queries from legitimate ones while 
minimizing false positives. These results align with existing research that supports the use of advanced deep 
learning techniques for cybersecurity applications. Furthermore, the study contributed valuable insights into 
data preprocessing and potential deployment scenarios, such as integration into domain registration and web 
hosting platforms. Overall, the research highlights the viability of Neural Networks for real-time SQL injection 
detection and provides a solid benchmark for future innovations in this domain. 

Although the current findings underscore the potential of Neural Networks for SQL injection detection, 
future research is needed to enhance and expand upon this work. This includes evaluating the model's 
performance on larger and more diverse datasets to improve generalizability and resilience against evolving 
attack patterns. Additionally, improving model interpretability will be crucial for building user trust and 
facilitating further refinement. Exploring hybrid models that combine Neural Networks with other techniques 
like runtime validation and vulnerability simulation could offer more comprehensive protection. Monitoring 
emerging SQL injection tactics will ensure the model remains up-to-date and effective. Lastly, the application 
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of federated learning could enable secure, distributed model training without compromising sensitive data, 
paving the way for more robust, scalable, and privacy-aware solutions in SQL injection detection. 
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