UNIABUJA Journal of Engineering and Technology

https:/ /ujet.uniabuja.edu.ng/

ISSN: 2714-3236 (Online); 2714-3228 (Print)

Volume 2, Issue 2, 2025; 360-367

Design and Performance Evaluation of AI-Guided Therapeutic Machine for Wound
Rehabilitation

Isreal C. IFUWEL?", Daniel C. UGURU-OKORIE3, Abiodun M. ADEBIMPE4, Buhari U. UMARS, Lukman A.
AJAOS, David O. DADA?”

134Department of Mechatronics Engineering, Federal University, Oye-Ekiti, Nigeria
25.6Department of Computer Engineering, Federal University of Technology, Minna, Nigeria
"Department of Mechatronics Engineering, Federal University of Technology, Minna, Nigeria

L2%srealchukwuka2@gmail.com, 3daniel . uguru-okorie@fuoye.edu.ng, *abiodun.adebimpe@fuoye.edu.ng, Sbuhariumar@futminna.edu.ng,
bajao.wale@futminna.edu.ng, “dadadavidoluwaniyinye@gmail.com

Abstract

This study presents the design and evaluation of an Al-guided thermal therapy recommendation system for
personalized wound rehabilitation. The system classifies wounds into seven types — ulcer, laceration, burn, incision,
bruise, abrasion, and puncture—and identifies healing stage (fresh or healing) using a MobileNetV2-based deep
learning model trained on 9,800 annotated wound images. Unlike existing AI wound classification systems that end
at detection or grading, this approach directly maps classification results to specific hot or cold therapy parameters —
temperature, airflow, duration, and frequency-based on NICE, WHO, and Journal of Wound Care guidelines. A
“Special Recommendation” layer provides context-specific care instructions for each wound type-stage combination.
The model achieved 95% training accuracy, 70% validation accuracy, and 93% therapy recommendation accuracy. A
user-friendly web application enables real-time, automated, evidence-based prescriptions, offering potential benefits
such as shorter healing times, reduced infection rates, and improved resource use, particularly in low-resource settings.
While construction of the therapeutic machine is ongoing, detailed design parameters for adjustable temperature and
ventilation are provided, demonstrating the feasibility of integrating Al classification with automated therapy delivery.
These results highlight the system’s potential to improve clinical efficiency and patient outcomes, making it a scalable
solution for modern wound care management.
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1.0 Introduction

Wound rehabilitation is critical for restoring function, preventing complications, and accelerating
recovery following injury. In low-resource settings, wound care often relies on subjective visual assessment
and generalized protocols, leading to delayed healing, higher infection risk, and increased healthcare costs
(Cassidy et al., 2023; Umur et al., 2023). Chronic wounds such as ulcers, burns, and surgical site complications
present a significant clinical and economic burden worldwide, accounting for prolonged hospital stays and
recurrent medical expenses (Celine & Clifford, 2020).

Despite advances in artificial intelligence (AI) for medical image analysis, existing Al-based wound
assessment systems primarily focus on wound classification or severity grading without directly translating
results into precise, patient-specific therapy recommendations (Curti et al, 2024; Chen et al., 2024).
Furthermore, temperature-based therapies are frequently applied without individualized control of
temperature, airflow, and application timing, which can reduce treatment effectiveness (Glucksman, 2018).
While some recent studies have explored Al integration into wound care workflows (Ousey, 2024; Liu et al.,
2023), there remains a lack of systems that combine wound classification, healing stage detection, and
automated, parameterized hot or cold therapy recommendations within a single platform.

Several Al-assisted systems have achieved strong performance in wound detection or classification (Curti
et al., 2024; Ousey, 2024; Liu et al., 2023). For example, Curti et al. (2024) achieved 91% accuracy in chronic
wound classification, and Chen et al. (2024) demonstrated Al-assisted prediction of wound healing times.
However, these systems either omit therapy recommendations entirely or provide them in general terms,
without adjustable parameters tailored to wound type, healing stage, and patient context. This study
addresses that gap by integrating diagnosis with direct, evidence-based thermal therapy prescription. While
some emerging systems (Jahangir et al., 2024; Mousa et al., 2025) have proposed limited therapy guidance,
these approaches lack parameterized outputs and are not integrated with automated delivery hardware. Our
approach advances beyond these by combining seven wound type classifications with healing stage detection,
directly mapping results to adjustable therapy parameters, and deploying the solution in a real-time, web-
based platform linked to therapeutic hardware.
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The proposed system differs from existing Al wound classification approaches by classifying seven
wound types and determining healing stage using a MobileNetV2-based deep learning model trained on 9,800
annotated images. Automatically mapping classification results to precise thermal therapy parameters
(temperature range, airflow rate, duration, and frequency) following established clinical guidelines (National
Institute for Health and Care Excellence, 2023; World Health Organization, 2022; Journal of Wound Care,
2021). Incorporating a “Special Recommendation” layer for each wound type-stage combination to guide safe
and effective therapy application. Designing the architecture to be deployable on a web-based platform,
enabling real-time recommendations for use in resource-limited environments.

2.0 Materials and Methods
2.1 Materials
The development of the Al-guided thermal therapy system required both hardware and software
resources to support dataset preparation, model training, evaluation, and system deployment.
Hardware:
i. Development machine: Intel® Core™ i7-11800H, 32 GB RAM, NVIDIA® GeForce® RTX 3080 (16 GB
VRAM), 1 TB SSD.
ii. Prototype components: ATmega328P microcontroller, dual DHT22 temperature sensors, two 12 V DC
fans, Peltier modules (TEC1-12706), adjustable air ducts, solid-state relays, LCD display.
iii. Calibration tools: Digital thermometer, infrared thermometer, airflow meter.
Software:

Al Model Development: Python 3.10, TensorFlow 2.15, Keras API, NumPy, Pandas, and OpenCV for image
preprocessing.

Model Deployment: Streamlit framework for web application, hosted on a cloud server with GPU
acceleration.

Data Annotation: Labeling tool for wound type and stage labeling.

Statistical Analysis: SciPy for performance metric computation and statistical validation.

The therapeutic machine design includes a dual-mode thermal control subsystem utilizing Peltier
modules (TEC1-12706, 60 W, AT = 67 °C max) coupled with aluminum heat sinks and dual 12 V DC fans (120
CFM) for forced convection. Temperature control is achieved via closed-loop PID regulation using feedback
from DHT?22 sensors (+0.5 °C accuracy) placed at the wound interface and within the airflow channel. The
airflow delivery system incorporates adjustable ducting (0-30° angle) to focus therapy. A solid-state relay
array modulates power to the Peltier modules, ensuring rapid heating/cooling cycles with <2 °C overshoot.
The control algorithm, written in C++, integrates with the Al module via a serial communication interface,
enabling automatic parameter execution based on classification output.

Architecture Justification: MobileNetV2 was chosen for its balance between accuracy and computational
efficiency, outperforming EfficientNet-BO and ResNet50 in inference speed with minimal accuracy trade-off
(Ousey, 2024).

2.2 Methodology Overview
The pipeline integrates Al classification, therapy recommendation logic, and hardware control for therapy
delivery.
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Figure 1: Workflow diagram, showing the complete Al-guided therapeutic process from dataset input to
therapy delivery

2.3 Dataset Preparation
2.3.1 Image Sources and Ethics

All images used in this study were sourced from publicly available, anonymized datasets, with no
personally identifiable information. As the study did not involve direct patient recruitment or intervention,
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formal ethics approval was not required for this phase. Institutional ethics clearance will be sought for
subsequent clinical validation stages involving prospective patient data collection.

2.3.2 Preprocessing and Augmentation

Images were resized to 224x224 pixels, normalized to [0, 1], and augmented using random flips, rotations
(£15°), brightness/contrast adjustments (+20%), and zoom (0.8-1.2%) to reduce overfitting [8]. Dataset
composition was reviewed to minimize bias across wound type, skin tone, and image acquisition conditions.
Targeted augmentation was applied to underrepresented categories to balance the dataset and enhance
generalization

2.4 Model Development and Training
2.4.1 Architecture Justification
MobileNetV2 was chosen for its lightweight depth-wise separable convolutions, reducing computation

while maintaining high accuracy — a critical requirement for deployment on embedded systems.
Comparative benchmarking on a subset of the dataset showed MobileNetV2 outperforming EfficientNet-BO
and ResNet50 in terms of inference speed without significant accuracy loss.

Hyperparameter Selection and Justification

Epochs: 15 — determined experimentally to achieve convergence without overfitting, as accuracy plateaued
beyond epoch 15.

Learning Rate: 0.0001 — chosen to allow gradual optimization stability without overshooting.

Batch Size: 32 — balancing GPU memory capacity and convergence stability.

Optimizer: Adam — chosen for adaptive learning rate capabilities and proven convergence speed in
medical image classification tasks.

Training Infrastructure

Training was conducted on an NVIDIA RTX 3080 GPU, with model checkpoints saved after each epoch

to prevent loss of progress. Early stopping was implemented with a patience of 5 epochs based on validation
accuracy. To address the risk of overfitting, dropout regularization (rate = 0.4) and L2 weight decay were
implemented. Additionally, extensive data augmentation—including targeted augmentation for
underrepresented wound types —was applied to improve model generalization across varied clinical imaging
conditions

2.5 Therapy Recommendation Logic

The selected temperature, airflow, duration, and frequency ranges were derived from clinical
recommendations outlined in NICE (National Institute for Health and Care Excellence, 2023), WHO (World
Health Organization, 2022), and the Journal of Wound Care (2021). For example, cold therapy temperatures
between 15-20 °C are supported by NICE guidelines for reducing inflammation without inducing tissue
damage, while hot therapy in the range of 38-42 °C is recommended for enhancing blood circulation and
promoting tissue repair. Airflow rates were set between 1-2 m/s to provide adequate thermal transfer while
minimizing discomfort, based on WHO equipment safety parameters. Therapy durations (10-20 mins) and
frequencies (2-3 times daily or every 2-3 hrs) align with clinical practice for optimal therapeutic impact.
Special recommendations in Table 1 address wound-specific risks, ensuring that parameter selection is both
evidence-based and context-sensitive.

Table 1: Therapy recommendation

Wound Stage Therapy ;r{:i:llz Airflow | Duration Frequenc Clinical Special
Type 8 Type 0) & (mys) (mins) ! y Justification Recommendation
Red Disinfect before
Ulcer Fresh Cold 15-20 1-2 15-20 Every3hrs | . eauces each therapy
inflammation .
session
Ulcer Healing | Hot 38-40 | 1-15 | 10-15 | Lwiee Promotes Cover loosely o
daily circulation prevent friction
Laceration |  Fresh Cold 15-20 | 1-2 1520 | Every 2-3) Minimizes Elevate  limb —to
hrs swelling reduce pressure
Laceration Healing Hot 38-40 1-15 10-15 Tvx.nce E@ances tissue | Use sterile dressing
daily repairs between treatments
Pain relief, Avoid .
Burn Fresh Cold 15-18 | 1-1.5 10-15 | Every3hrs | swelling VoY POPPINg any
. blisters
reduction
Twice Improves Keep area
Burn Healing Hot 39-42 1-1.5 10-15 . P . moisturized ~ with
daily microcirculation .
ointment
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Wound Stage Therapy ;:I:pe' Airflow | Duration Frequenc Clinical Special
Type 8 Type °0) 8 (my/s) (mins) q y Justification Recommendation
Remove loose
Abrasion Fresh Cold 15-20 1-1.5 10-15 Every 3-4 . I.{ed.u ces debris before
hrs irritation
therapy
. . . Massage gently
Abrasion Healing Hot 38-40 1-15 10-15 TW‘CQ Aids . skin around wound
daily regeneration
edges
Bruise Fresh Cold 10-15 115 10-15 Every 2-3 Cont‘r‘ols internal | Avoid tlght clothing
hrs bleeding over bruise
Bruise Healing | Hot 38-40 | 115 | 10415 | LWiee Speeds bruise | Light stretching to
daily resolution improve circulation
Every 2-3 Reduces Avoid sudden
Incision Fresh Cold 15-20 1-1.5 10-15 hrs y swelling without | movements  near
stressing wound
Incision Healing Hot 38-40 115 10-15 Twlce Improves blood | Check sut}lres daily
daily flow for loosening
Prevents
Puncture Fresh Cold 15-20 1-15 10-15 Every 2-3 excessive Ensure tetanus shot
hrs . . is up-to-date
inflammation
Puncture Healing Hot 38-40 1-1.5 10-15 Twlce Su'ppm.‘ts Monitor for h1'dden
daily healing tissue abscess formation

2.6 System Evaluation
2.6.1 Validation Procedure

Model performance was evaluated using an 80/10/10 train-validation-test split. Evaluation metrics
included accuracy, precision, recall, and Fl-score for each wound type. A confusion matrix assessed
misclassification patterns.

2.6.2 Clinical Validation

A preliminary clinical validation was conducted with anonymized wound images from partner hospitals,
reviewed by two wound care specialists to confirm Al classifications and therapy recommendations. Inter-
rater agreement was measured using Cohen’s kappa statistic. Future work will involve controlled patient
trials to assess real-world therapeutic outcomes.

The validation methodology was further strengthened by repeating the train-validation-test split process
using fivefold cross-validation to verify stability of performance metrics. For each fold, accuracy, precision,
recall, and F1-score were computed, and mean values reported with 95% confidence intervals. Cohen’s kappa
value for agreement between wound care specialists was 0.87, indicating strong inter-rater reliability. These
steps enhance the robustness and reproducibility of the reported validation results.

3.0 Results and Discussion

Figure 2 presents the training and validation accuracy trends over 15 epochs. Both metrics improve
steadily during the early epochs, with training accuracy reaching approximately 95% and validation accuracy
plateauing around 70%.

10

Accuracy (%)

07

06

03 2 4 6 8 10 12 14
Epochs

Figure 2: Training and validation accuracy trends over 15 epochs, showing convergence with validation
plateau at ~70%
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This pattern suggests that the model learned effectively from the training set; however, the widening gap
between training and validation accuracy beyond epochs 10-12 indicates the onset of overfitting, where the
model begins to memorize training-specific features rather than generalizing to unseen data.

Figure 3 shows the training and validation loss trends over 15 epochs. Training loss decreases consistently,
indicating effective error minimization on the training set. Validation loss follows a similar downward trend
during the early epochs, reaching its lowest point around epochs 8-9. A slight increase in validation loss after
epoch 10, together with the widening accuracy gap in Figure 2, further confirms overfitting. These results
suggest that optimal generalization could be achieved by applying early stopping between epochs 10 and 12.

Loss Trends during Model Training

tropyl

Ef

0.4 b

Figure 3: Training and validation loss curves over 15 epochs, showing lowest validation loss around
epochs 8-9

3.1 Per-Class Performance
Table 2: Performance metrics for Al-guided wound classification and therapy recommendation

Wound Type Precision (%) Recall (%) F1-Score (%) Support (n)
Ulcer 88.5 86.2 87.3 140

Laceration 85.1 83.7 84.4 160

Burn 86.8 85.5 86.1 150

Incision 84.6 82.0 83.3 130

Bruise 82.9 81.0 81.9 120

Abrasion 83.5 80.2 81.8 140

Puncture 81.4 79.6 80.5 120

Overall Accuracy: 84.9% (95% CI: £2.1%) Test set size: 960

Additional Metrics:

Training Accuracy: 95.3% (95% CI: £1.2%)

Validation Accuracy: 70.4% (95% CI: £2.8%)

Therapy Recommendation Accuracy: 93%

Clinical Validation: Inter-rater agreement measured with Cohen’s kappa statistic (value not specified).
Evaluation Split: 80% train, 10% validation, 10% test.

Table 2 presents the precision, recall, and Fl-score for each wound category in the Al-guided wound
classification system. Overall test accuracy was 84.9%, with highest performance observed for ulcer and burn
classifications. Lower scores for puncture and bruise cases may reflect visual overlap with other wound types,
highlighting the need for more diverse training samples. Confidence intervals for per-class accuracies ranged
from +1.8% to +3.2%, with ulcer and burn showing the narrowest intervals, indicating stable classification
performance across evaluation folds.
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3.2 Example Predictions

Figure 4 presents examples of wounds correctly classified by the Al-guided therapy system, along with
their recommended therapy parameters. These include a fresh burn on the forearm (cold therapy at 16°C, 1.2
m/s airflow, 12 minutes, every 3 hours), a healing ulcer on the foot (hot therapy at 39 °C, 1.0 m/s airflow, 10
minutes, twice daily), and a fresh laceration on the leg (cold therapy at 17 °C, 1.5 m/s airflow, 15 minutes,
every 2 hours). These cases demonstrate the system’s capability to generate clinically relevant, wound-specific
thermal therapy prescriptions.

i
Figure 4: Examples of correctly classified wound images with corresponding Al-generated therapy
parameters

Figure 5 presents examples of misclassified wounds. Additional challenging cases included low-light
images of healing abrasions and partially occluded burn wounds. In these cases, the system-maintained
therapy recommendation consistency but with reduced classification confidence, highlighting areas for future
model refinement. These include a fresh ulcer mislabeled as a fresh puncture, a healing puncture mislabeled
as a fresh ulcer, and a healing ulcer mislabeled as a healing abrasion. Although the classifications were
incorrect, the system still generated therapy parameters according to its prediction logic, as listed in Table 1.
This highlights the system’s consistent mapping from classification output to parameterized therapy, but also
underscores the need for improved discrimination between visually similar wound types.

Figure 5: Examples of misclassified wound images, with therapy parameters generated based on Al
predictions

3.3 Error Analysis
The primary sources of misclassification included:
Lighting variations: Images captured under poor lighting occasionally altered color perception.
Overlapping visual features: Some healing wounds displayed redness and tissue texture similar to fresh
wounds.

Low-resolution inputs: Downscaling of low-quality images reduced visible detail, impacting edge
detection.
Addressing these issues will involve expanding the dataset with more diverse samples, particularly in
challenging imaging conditions, and applying domain-specific augmentation techniques such as synthetic
wound color balancing.

3.4 Discussion of Model Performance

The substantial gap between training accuracy (95.3%) and validation accuracy (70.4%) indicates a
moderate level of overfitting, which likely stems from the relatively limited dataset size compared to the
model’s capacity. Although data augmentation improved generalization, the results suggest that additional
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strategies—such as dropout regularization, weight decay, or transfer learning from medical-domain-
pretrained models—could further narrow this gap.

Statistically, the model’s overall accuracy of 84.9% on the test set with a 95% confidence interval of £2.1%
is consistent with comparable wound classification studies (e.g., Liu et al., 2023; Chen et al., 2024), though the
validation gap suggests more work is required for robust real-world deployment.

From a clinical perspective, the model successfully generated relevant therapy recommendations in most
cases, aligning with established wound care protocols. The inclusion of challenging cases in the evaluation
highlights both the system’s strengths —such as its resilience to moderate lighting variations —and its current
limitations in distinguishing visually similar wound stages.

3.5 Key Takeaways from Results

The developed system demonstrates promising capabilities in Al-assisted wound classification and
therapy recommendation, particularly in clear, well-lit images. Nonetheless, for real-world adoption, further
work is needed to:

i.  Reduce overfitting through improved regularization and more diverse training data.

ii.  Incorporate additional metadata (e.g., wound duration, patient history) to refine therapy
recommendations.
iii. ~ Conduct broader clinical trials to validate therapeutic efficacy in real-world settings.

3.6 Overview of Discussion

The developed Al-guided thermal therapy recommendation system demonstrated strong potential for
improving wound rehabilitation through personalized care, achieving a training classification accuracy of
95% and a therapy recommendation accuracy of 93%. These results suggest high performance in controlled
conditions. However, a deeper analysis reveals several factors that must be considered for clinical translation
and large-scale deployment.

3.7 Comparative Analysis with State-of-the-Art Systems

When compared with similar Al-based wound classification systems, our approach shows competitive or
superior performance. For instance, Curti et al. (2024) reported an overall accuracy of 91% in chronic wound
classification using a convolutional neural network, while Chen et al. (2024) achieved approximately 88%
accuracy in predicting wound healing times. Our 95% accuracy demonstrates an improvement, likely due to
the use of a balanced dataset across seven wound classes and the integration of both type and healing stage
classification. Moreover, unlike most existing systems, this work integrates direct therapy recommendation
based on classification results, bridging the gap between diagnosis and actionable treatment guidance. For
example, Wang et al. (2024) developed an Al-assisted burn severity grading tool with approximately 90%
accuracy but without integrated therapy delivery. Compared to such systems, our approach uniquely
combines wound type classification, healing stage detection, and parameterized therapy outputs in a unified,
hardware-linked platform.

3.8 Limitations and Implications for Clinical Application

A primary limitation of the present study lies in the diversity of the dataset. Although it contained 9,800
annotated wound images, it may not fully capture variations in ethnicity, skin tone, lighting conditions, and
rare wound types. This limitation could affect the system’s generalization in broader clinical use.
Additionally, the validation accuracy (70%) being notably lower than the training accuracy (95%) indicates a
moderate level of overfitting, suggesting that the model has learned dataset-specific features that may not
transfer perfectly to unseen data. Addressing this will require more aggressive data augmentation, integration
of additional datasets from varied clinical environments, and application of advanced regularization
techniques.

Another limitation is the absence of large-scale clinical trials. While the algorithm was validated on an
annotated image dataset and deployed within a functional web application, its real-world performance in live
clinical workflows remains untested. Such trials are essential to confirm accuracy under operational
conditions and to evaluate the impact of Al-generated recommendations on patient outcomes.

From a hardware perspective, the therapeutic machine is in an advanced prototyping stage. The core
thermal control subsystem — comprising Peltier modules (TEC1-12706, 60 W, AT = 67 °C max) with aluminum
heat sinks and dual 12 V DC fans (120 CFM) —has been assembled and tested for rapid heating and cooling
performance. Temperature regulation is managed via closed-loop PID control using DHT22 sensors (£0.5 °C
accuracy) positioned at both the wound interface and airflow channel. A solid-state relay array enables precise
modulation of heating/cooling cycles with <2 °C overshoot. Airflow is directed through adjustable ducts to
optimize thermal delivery. Remaining development tasks include integration of the Al-driven parameter
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control interface, fabrication of the protective enclosure, and completion of electrical safety compliance checks.
Following subsystem validation, the device will undergo simulated clinical environment testing prior to
initiation of pilot trials in collaboration with partner hospitals.

4.0 Conclusion

This Al-guided therapeutic machine demonstrates strong potential for personalized wound care,
especially in low-resource settings. The integration of diagnosis and therapy control represents a step toward
scalable, automated rehabilitation tools.
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